Skip to main content
Log in

Radon migration in finite-thickness particle-packing emanation media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A particle-packing emanation media consists of ore particles with varying size and shape commonly existing in the stopes and the blind roadways of underground uranium mines, from which exhaled radon poses a health hazard to mining personnel. Dynamic equations of radon release-diffusion-seepage migration in finite-thickness particle-packing emanation media were established in this study based on the individual ore model. Calculation equations for radon exhalation rate and proportion of the media under two different kinds of migration mechanisms (drived by seepage-diffusion or only by seepage) were deduced and the results were utilized to explore the influence of media thickness, diffusion coefficient, and equivalent media particle size on radon exhalation. The results show that radon exhalation rate along the direction of seepage flow first sharply increases, then slightly increases with the equivalent velocity of seepage (dimensionless) increases from 0 to 20, whereas the opposite is the case for the reverse direction of seepage flow radon; the total radon exhalation rate increases with the thickness of media and the seepage velocity increase. The results also show that radon exhalation proportion is significantly influenced by equivalent particle size under a small diffusion coefficient. These findings can be used as references for ventilation design to reduce radon concentration level in the stopes of underground uranium mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Archer VE, Coons T, Saccomanno G, Hong DY (2004) Latency and the lung cancer epidemic among United States uranium miners. Health Phys 87:480–489. https://doi.org/10.1097/01.HP.0000133216.72557.ab

    Article  CAS  PubMed  Google Scholar 

  2. ICRP (1993) Protection against radon-222 at home and at work. ICRP publication 65. Ann.ICRP 23(2)

  3. Somlai J, Gorjánácz Z, Várhegyi A, Kovács T (2006) Radon concentration in houses over a closed Hungarian uranium mine. Sci Total Environ 367:653–665. https://doi.org/10.1016/j.scitotenv.2006.02.043

    Article  CAS  PubMed  Google Scholar 

  4. Sahu P, Panigrahi DC, Mishra DP (2015) Evaluation of effect of ventilation on radon concentration and occupational exposure to radon daughters in low ore grade underground uranium mine. J Radioanal Nucl Chem 303:1933–1941. https://doi.org/10.1007/s10967-014-3687-8

    Article  CAS  Google Scholar 

  5. Zhou Q, Liu S, Xu L et al (2019) Estimation of radon release rate for an underground uranium mine ventilation shaft in China and radon distribution characteristics. J Environ Radioact 198:18–26. https://doi.org/10.1016/j.jenvrad.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  6. Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60:807–815

    Article  CAS  Google Scholar 

  7. Yakovleva VS, Parovik RI (2010) Solution of diffusion-advection equation of radon transport in many-layered geological media. Nukleonika 55:601–606

    CAS  Google Scholar 

  8. Lakatos I, Bauer K, Lakatos-Szabó J et al (1997) Diffusion of radon in porous media saturated with gels and emulsions. Transp Porous Media 27:171–184. https://doi.org/10.1023/A:1006564200829

    Article  CAS  Google Scholar 

  9. Jiránek M, Froňka A (2008) New technique for the determination of radon diffusion coefficient in radon-proof membranes. Radiat Prot Dosim 130:22–25. https://doi.org/10.1093/rpd/ncn121

    Article  Google Scholar 

  10. Ye Y, Wang L, Ding D et al (2014) Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore. Radiat Meas 68:1–6

    Article  CAS  Google Scholar 

  11. Ali FSA, Mahdi KH, Jawad EA (2019) Humidity effect on diffusion and length coefficient of radon in soil and building materials. Energy Proc 157:384–392. https://doi.org/10.1016/j.egypro.2018.11.203

    Article  CAS  Google Scholar 

  12. Sakoda A, Ishimori Y, Hanamoto K et al (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45:204–210. https://doi.org/10.1016/j.radmeas.2010.01.010

    Article  CAS  Google Scholar 

  13. Zhang Z, Zhu MA, Zhang YX (2010) Radon protection technology of underground engineering and human settlement. Energy Press, Beijing

    Google Scholar 

  14. Sahu P, Mishra DP, Panigrahi DC et al (2013) Radon emanation from low-grade uranium ore. J Environ Radioact 126:104–114. https://doi.org/10.1016/j.jenvrad.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  15. Ye YJ, Wu WH, Feng SY, Huang CH, Li S et al (2018) Simultaneous determination of the radon diffusion coefficient and the free radon production rate from compact porous emanation media. Build Environ 144:66–71. https://doi.org/10.1016/j.buildenv.2018.08.015

    Article  Google Scholar 

  16. Feng Y-S, Wang J-M, Wang J-F, Xing J-W (2014) Discussion of impact of radon migration spontaneous combustion fire area with different porosity. Coal Technol 33:22–24. https://doi.org/10.13301/j.cnki.ct.2014.06.009

    Article  Google Scholar 

  17. Cozmuta I, Van der Graaf ER (2001) Methods for measuring diffusion coefficients of radon in building materials. Sci Total Environ 272:323–335. https://doi.org/10.1016/S0048-9697(01)00711-2

    Article  CAS  PubMed  Google Scholar 

  18. Minkin L, Shapovalov AS (2016) Thermo-diffusional radon waves in soils. Sci Total Environ 565:1–7. https://doi.org/10.1016/j.scitotenv.2016.04.131

    Article  CAS  PubMed  Google Scholar 

  19. Awhida A, Ujić P, Vukanac I et al (2016) Novel method of measurement of radon exhalation from building materials. J Environ Radioact 164:337–343. https://doi.org/10.1016/j.jenvrad.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  20. Ryzhakova NK (2014) A new method for estimating the coefficients of diffusion andemanation of radon in the soil. J Environ Radioact 135:63–66. https://doi.org/10.1016/j.jenvrad.2014.04.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11575080), the National Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2318) and the China Scholarship Council (File No. 201808430072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Liu, W., Huang, C. et al. Radon migration in finite-thickness particle-packing emanation media. J Radioanal Nucl Chem 324, 737–746 (2020). https://doi.org/10.1007/s10967-020-07095-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07095-8

Keywords

Navigation