Skip to main content
Log in

International cooperation in age-dating uranium standards for nuclear forensics using the 231Pa/235U radiochronometer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

During 2017–2018 Los Alamos National Laboratory, Lawrence Livermore National Laboratory and the China Institute of Atomic Energy collaborated in an interlaboratory 231Pa/235U radiochronometry exercise. The laboratories used different analytical methods to obtain a consensus model purification date for CRM U010 of December 28, 1958 ± 198 days and for CRM U850 of May 20, 1958 ± 363 days. These results agree with previously reported model dates using the 230Th/234U radiochronometer as well as the production histories of these materials. The concordance of interlaboratory data confirms the ability of laboratories to make reproducible radiochronometry measurements using distinct analytical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900

    Article  CAS  Google Scholar 

  2. Mayer K, Wallenius M, Varga Z (2015) Interviewing a silent (radioactive) witness through nuclear forensic analysis. Anal Chem 87:11605–11610

    Article  CAS  Google Scholar 

  3. Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S, Mayer K, Prohaska T (2014) Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J Radioanal Nucl Chem 302:399–411

    Article  CAS  Google Scholar 

  4. Varga Z, Mayer K, Bonamici CE, Hubert A, Hutcheon I, Kinman W, Kristo M, Pointurier F, Spencer K, Stanley F, Steiner R, Tandon L, Williams R (2015) Validation of reference materials for uranium radiochronometry in the frame of nuclear forensics investigations. Appl Radiat Isot 102:81–86

    Article  CAS  Google Scholar 

  5. Kristo MJ, Gaffney AM, Marks N, Knight K, Cassata WS, Hutcheon ID (2016) Nuclear forensic science: analysis of nuclear material out of regulatory control. Annu Rev Earth Planet Sci 44:555–579

    Article  CAS  Google Scholar 

  6. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A, Pointurier F, Schorzman KC, Steiner RE, Williams RW (2016) Round-robin 230Th–234U age dating of bulk uranium for nuclear forensics. J Radioanal Nucl Chem 307:2055–2060

    Article  CAS  Google Scholar 

  7. Kayzar TM, Williams RW (2016) Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers. J Radioanal Nucl Chem 307:2061–2068

    Article  CAS  Google Scholar 

  8. Treinen KC, Kinman WS, Chen Y, Zhu L, Cardon AMR, Steiner RE, Kayzar-Boggs TM, Williams RW, Zhao Y-G (2017) J Radioanal Nucl Chem 314:2469–2474

    Article  CAS  Google Scholar 

  9. Rolison JM, Williams RW (2018) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to UF6 cylinders. J Radioanal Nucl Chem 317:897–905

    Article  CAS  Google Scholar 

  10. Kristo MJ, Williams R, Gaffney AM, Kayzar-Boggs TM, Schorzman KC, Lagerkvist P, Vesterlund A, Ramebäck H, Nelwamondo AN, Kotze D, Song K, Lim SH, Lee C-G, Okubo A, Maloubier D, Cardona D, Samuleev P, Dimayuga I, Varga Z, Wallenius M, Mayer K, Loi E, Keegan E, Harrsion J, Thiruvoth S, Stanley FE, Spencer KJ, Tandon L (2018) The application of radiochronometry during the 4th collaborative materials exercise of the nuclear forensics international technical working group (ITWG). J Radioanal Nucl Chem 315:425–434

    Article  CAS  Google Scholar 

  11. Rolison JM, Treinen KC, McHugh KC, Gaffney AM, Williams RW (2017) Application of the 226Ra–230Th–234U and 227Ac–231Pa–235U radiochronometers to uranium certified reference materials. J Radioanal Nucl Chem 314:2459–2467

    Article  CAS  Google Scholar 

  12. Essex RM, Williams RW, Treinen KC, Collé R, Fitzgerald R, Galea R, Keightley J, LaRosa J, Laureano-Pérez L, Nour S, Pibida L (2019) J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06711-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petit GS (1960) Preparation of uranium isotopic standards for the National Bureau of Standards. Union Carbide Nuclear Company, Oak Ridge, Tennessee. Oak Ridge National Laboratory, Report#KL-8, Department of Energy/K25 Archives

  14. Sims KWW, Gill JB, Dosseto A, Hoffmann DL, Lundstrom CC, Williams RW, Ball L, Tollstrup D, Turner S, Prytulak J, Glessner JJG, Standish JJ, Elliott T (2008) An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. Geostand Geoanal Res 32(1):65–91

    Article  CAS  Google Scholar 

  15. Geological and Environmental Reference Materials (GeoReM). http://georem.mpch-mainz.gwdg.de/. Accessed 1 Sept 2019

  16. Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) 235U–231Pa age dating of uranium materials for nuclear forensic investigations. J Anal At Spectrom 28:666–674

    Article  CAS  Google Scholar 

  17. Treinen KC, Gaffney AM, Rolison JM, Samperton KM, McHugh KC, Miller ML, Williams RW (2018) Improved protactinium spike calibration method applied to 231Pa–235U age-dating of certified reference materials for nuclear forensics. J Radioanal Nucl Chem 318(1):209–219

    Article  CAS  Google Scholar 

  18. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889

    Article  Google Scholar 

  19. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov. Accessed 19 Oct 2018

  20. Robert J, Miranda CR, Muxart R (1969) Mesure de la periode du protactinium-231 par microcalorimetrie. Radiochim Acta 11(2):104–108

    Article  CAS  Google Scholar 

  21. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov. Accessed May 2018

  22. Jones RT, Merritt JS, Okazaki A (1986) A measurement of the thermal neutron capture cross section of 232Th. Nucl Sci Eng 93:171–180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Nuclear Security Administration’s Nuclear Smuggling Detection and Deterrence office for direct funding. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is managed by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy Under Contract 89233218CNA000001. Lawrence Livermore National Laboratory performed this work under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. The China Institute of Atomic Energy wish to thank colleagues at the State Nuclear Security Technology Center in China for assistance with sample ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna S. Denton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denton, J.S., Treinen, K.C., Chen, Y. et al. International cooperation in age-dating uranium standards for nuclear forensics using the 231Pa/235U radiochronometer. J Radioanal Nucl Chem 324, 705–714 (2020). https://doi.org/10.1007/s10967-020-07084-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07084-x

Keywords

Navigation