Skip to main content
Log in

Uranium(VI) adsorption on montmorillonite colloid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Montmorillonite colloid was synthesized and characterized and the adsorption of U(VI) on colloid as a function of contact time, temperature, initial concentration of U(VI) solution, pH and foreign ions was investigated through batch experiments. The results illustrate that the adsorption reaches equilibrium quickly within 30 mins. Results showed that the absorption process is influenced by pH value, temperature and ions, among which pH value is the most significant. Adsorption percentage increases obviously at pH = 4.0–7.0, and then decreases with the increase of pH value. The competitive cations also inhibit the adsorption. pH value and ions affect the surface properties and charges of the colloid and the chemical form of nuclides. The experimental data was analyzed in detail. The maximum adsorption capacity obtained by fitting the second-order kinetic model is very close to the experimental data. The Langmuir model fits the experimental data better than Freundlich models, R2 = 0.991. The results of fitting two adsorption isotherms show that the adsorption of colloids on uranium has both physical and chemical adsorption, and is mainly monolayer adsorption. Furthermore, the adsorption process is a spontaneous endothermic reaction by calculating the thermodynamic parameters. This experiment can provide some data basis for the adsorption study of U(VI) on colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Ju (2014) On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China. J Rock Mech Geotech Eng 6(02):99–104

    Article  CAS  Google Scholar 

  2. Wang Ju, Chen Liang, Rui Su, Zhao Xingguang (2018) The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests. J Rock Mech Geotech Eng 10(03):411–435

    Article  CAS  Google Scholar 

  3. Novikov AP, Kalmykov SN, Utsunomiya S (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314:638–641

    Article  CAS  Google Scholar 

  4. Kersting AB, Efurd DW, Finnegan DL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59

    Article  CAS  Google Scholar 

  5. Albarran N, Missana T, García-Gutiérrez Miguel (2011) Strontium migration in a crystalline medium: effects of the presence of bentonite colloids. J Contam Hydrol 122:76–85

    Article  CAS  Google Scholar 

  6. Champ DR, Merritt WF, Young JL (1981) Potential for the rapid transport of plutonium in groundwater as demonstrated by core column studies. MRS Proc 11:745

    Article  Google Scholar 

  7. Matshunaga T, Nagao S, Ueno T, Takeda S, Amano H, Tkachenko Y (2004) Association of dissolved radionuclides released by the Chernoyl accident with colloidal materials in surface water. Appl Geochem 19:1581–1599

    Article  Google Scholar 

  8. Kunze P, Seher H, Hauser W (2008) The influence of colloid formation in a granite groundwater bentonite porewater mixing zone on radionuclide speciation. J Contam Hydrol 102:263–272

    Article  CAS  Google Scholar 

  9. Möri A, Alexander WR, Geckeis H (2003) The colloid and radionuclide retardation experiment at the Grimsel test site: influence of bentonite colloids on radionuclide migration in a fractured rock. J Colloids Surf A 217:33–47

    Article  Google Scholar 

  10. Buddemeier RW, Hunt JR (1988) Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada test site. J Appl Geochem 3:535–548

    Article  CAS  Google Scholar 

  11. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510

    Article  CAS  Google Scholar 

  12. Kang MJ, Han BE, Hahn PS (2002) Precipitation and adsorption of uranium(VI) under various aqueous conditions. Environ Eng Res 7(3):5743–5753

    Google Scholar 

  13. Belgacem A, Rebiai R, Hadoun H (2014) The removal of uranium(VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ Sci Pollut Res 21(1):684–694

    Article  CAS  Google Scholar 

  14. Joseph C, Schmeide K, Sachs S (2011) Sorption of uranium(VI) onto opalinus clay in the absence and presence of humic acid in opalinus clay pore water. Chem Geol 284(3–4):0–250

    Google Scholar 

  15. Korichi S, Bensmaili A (2009) Sorption of uranium(VI) on homoionic sodium smectite experimental study and surface complexation modeling. J Hazard Mater 169(1–3):780–793

    Article  CAS  PubMed  Google Scholar 

  16. Claveranne-Lamolère Céline, Lespes G, Dubascoux Stéphane (2009) Colloidal transport of uranium in soil: size fractionation and characterization by field-flow fractionation-multi-detection. J Chromatogr A 1216(52):9113–9119

    Article  PubMed  Google Scholar 

  17. Lesher EK, Ranville JF, Honeyman BD (2009) Analysis of pH dependent uranium(vi) sorption to nanoparticulate hematite by flow field-flow fractionation-inductively coupled plasma mass spectrometry. Environ Sci Technol 43(14):5403–5409

    Article  CAS  PubMed  Google Scholar 

  18. Guo L, Warnken KW, Santschi PH (2007) Retention behavior of dissolved uranium during ultrafiltration: implications for colloidal U in surface waters. Mar Chem 107(2):156–166

    Article  CAS  Google Scholar 

  19. Sun H, Yin X, Cao X (2012) Effect on the migration and release of montmorillonite colloid in saturated porous media. J Environ Sci 1120–1125 (in China)

  20. Singh BP, Menchavez R, Takai C, Fuji M, Takahashi M (2005) Stability of dispersions of colloidal alumina particles in aqueous suspensions. J Colloid Interface Sci 291(1):181–186

    Article  CAS  Google Scholar 

  21. Sun J, Velamakanni BV, Gerberich WW, Francis LF (2004) Aqueous latex/ceramic nanoparticle dispersions: colloidal stability and coating properties. J Colloid Interface Sci 280:387–399

    Article  CAS  Google Scholar 

  22. Uriev NB (2017) Dynamic aggregative and structural stability of high-concentration colloid dispersed systems. Prot Met Phys Chem Surf 53(1):188–197

    Article  CAS  Google Scholar 

  23. Tuddenham WM, Lyon RJP (1960) Infrared techniques in the identification and measurement of minerals. Anal Chem 32(12):1630–1634

    Article  CAS  Google Scholar 

  24. Tan XL, Hu J, Montavon G (2011) Adsorption speciation of nickel(II) onto ca-montmorillonite: batch, EXAFS techniques and modeling. J Dalton Trans 40:10953

    Article  CAS  Google Scholar 

  25. Anirudhan TS, Radhakrishnan PG (2009) Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue. Appl Surf Sci 255(9):4983–4991

    Article  CAS  Google Scholar 

  26. Tunali S, Akar T, Zcan AS (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47(3):105–112

    Article  CAS  Google Scholar 

  27. Missana T, Alonso Ú, Turrero MJ (2003) Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository. J Contam Hydrol 61(1):17–31

    Article  CAS  Google Scholar 

  28. Tan L, Jin Y, Chen J (2011) Sorption of radiocobalt(II) from aqueous solutions to Na-attapulgite. J Radioanal Nucl Chem 289(2):601–610

    Article  CAS  Google Scholar 

  29. Zhang C, Liu Z, Chen L (2012) Influence of pH, humic acid, ionic strength, foreign ions, and temperature on 60Co(II) adsorption onto γ-Al2O3. J Radioanal Nucl Chem 292:411–419

    Article  CAS  Google Scholar 

  30. Song X, Wang Y, Cai J (2013) Interaction of U(VI) with Na-attapulgite in the presence and absence of humic acid as a function of pH, ionic strength and temperature. J Radioanal Nucl Chem 295:685–695

    Article  CAS  Google Scholar 

  31. Fan Q, Shao D, Lu Y (2009) Effect of pH, ionic strength, temperature and humic substances on the adsorption of Ni (II) to Na-attapulgite. Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  32. Fan F-L, Qin Z, Bai J, Rong W-D, Fan F-Y, Tian W, Wu X-L, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46

    Article  CAS  PubMed  Google Scholar 

  33. Zcan A, Minencü E, Zcan AS (2006) Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloids Surf A 77(1–3):90–97

    Google Scholar 

  34. Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater 124(1–3):192–199

    Article  CAS  Google Scholar 

  35. Aytas S, Yurtlu M, Donat R (2009) Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J Hazard Mater 172:667–674

    Article  CAS  PubMed  Google Scholar 

  36. Kraepiel AML, Keller K, Morel FMM (1999) A model for metal adadsorption on montmorillonite. J Colloid Interface Sci 210:43–54

    Article  CAS  PubMed  Google Scholar 

  37. Batchelor Bill (1998) Leach models for contaminants immobilized by pH-dependent mechanisms. J Environ Sci Technol 32:1721–1726

    Article  CAS  Google Scholar 

  38. Zachara JM, Mckinley JP (1993) Influence of hydrolysis on the adsorption of metal cations by smectites: importance of edge coordination reactions—dedicated to Paul W. Schindler on his retirement. J Aquat Sci 55:250–261

    Article  Google Scholar 

  39. Lagaly G, Ziesmer S (2003) Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. J Adv Colloid Interface Sci 100:105–128

    Article  Google Scholar 

  40. Yoshida T, Suzuki M (2006) Migration of strontium and europium in quartz sand column in the presence of humic acid: effect of ionic strength. J Radioanal Nucl Chem 270:363–368

    Article  CAS  Google Scholar 

  41. Prikryl JD, Jain A, Turner DR (2001) Uranium(VI) adsorption behavior on silicate mineral mixture. J Contam Hydrol 47:241–253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China Youth Fun (No. 41603124) and National Natural Science Foundation of China (No. 41630646) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchun Leng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Ma, J., Shi, Y. et al. Uranium(VI) adsorption on montmorillonite colloid. J Radioanal Nucl Chem 324, 541–549 (2020). https://doi.org/10.1007/s10967-020-07083-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07083-y

Keywords

Navigation