Skip to main content
Log in

Radon survey in office room and effective dose estimation for staff

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aims to: (1) Acquire the radon level in closed office rooms, providing radon exposure data for preliminary health risk assessment of office-working population. (2) Pre-analyze the relationship between radon concentration and indoor temperature, relative humidity. (3) Estimate seasonal, annual and total radon effective dose for ordinary office-working population. The results show that the 24-h or 8-h average radon concentrations in closed office rooms were about 32.0 Bq/m3 and 29.5 Bq/m3 during detection period, and the estimated effective doses in office rooms calculated by using 24-h and 8-h average radon concentrations were all far below that in residential environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNSVCEAR (1993) Report to the general assembly with scientific annexes. http://www.unscear.org/unscear/en/publications/1993.html

  2. ICRP (1993) ICRP Publication 50: Lung Cancer Risk from Exposures to Radon Daughters. http://www.icrp.org/publication.asp?id=ICRPPublication50

  3. IARC (1988) Directory of on-going research in cancer epidemiology, 1988. http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Directory-Of-On-Going-Research-In-Cancer-Epidemiology-1988

  4. Khan AJ (2000) A study of indoor radon levels in Indian dwellings, influencing factors and lung cancer risks. Radiat Meas 32(2):87–92

    Article  CAS  Google Scholar 

  5. Al-Jarallah MI, Fazal-ur-Rehman A-JF, Al-Shukri A (2003) Indoor radon measurements in dwellings of four Saudi Arabian cities. Radiat Meas 36(1–6):445–448

    Article  CAS  Google Scholar 

  6. Khayrat AH, Al-Jarallah MI, Fazal-Ur-Rehman X, Abu-Jarad F (2003) Indoor radon survey in dwellings of some regions in Yemen. Radiat Meas 36(1):449–451

    Article  CAS  Google Scholar 

  7. Papaefthymiou H, Mavroudis A, Kritidis P (2003) Indoor radon levels and influencing factors in houses of Patras, Greece. J Environ Radioact 66(3):247–260

    Article  CAS  Google Scholar 

  8. Rafique M, Rahman SU, Akram M (2012) Estimation of concentration and exposure doses due to radon by using CR-39 plastic track detectors in the residences of Sudhnuti, Azad Kashmir, Pakistan. Environ Earth Sci 66(4):1225–1232

    Article  CAS  Google Scholar 

  9. Girault F, Perrier F (2012) Estimating the importance of factors influencing the radon-222 flux from building walls. Sci Total Environ 433:247–263

    Article  CAS  Google Scholar 

  10. Demoury C, Ielsch G, Hemon D, Laurent O, Laurier D, Clavel J, Guillevic J (2013) A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J Environ Radioact 126(4):216–225

    Article  CAS  Google Scholar 

  11. Espinosa G, Chavarria A, Golzarri JI (2013) A study of indoor radon in greenhouses in Mexico City, Mexico. J Radioanal Nucl Chem 296(1):37–41

    Article  CAS  Google Scholar 

  12. Li W, Li X, Wang F, Xu Y (2016) Occupational exposure assessment and radiation dose estimation of vegetable-plant farmers to 222 Rn in greenhouses of Shouguang county, China. J Radioanal Nucl Chem 1:1–6

    Google Scholar 

  13. Li X, Xu X, Li W, Wang F, Hai C (2016) Preliminary study on the variation of radon-222 inside greenhouse of Shouguang county, China. J Environ Radioact 153:120–125

    Article  CAS  Google Scholar 

  14. Wiegand J, Feige S, Quingling X, Schreiber U, Wieditz K, Wittmann C, Xiarong L (2000) Radon and thoron in cave dwellings (Yan’an, China). Health Phys 78(4):438–444

    Article  CAS  Google Scholar 

  15. Yamada Y, Tokonami S, Zhuo W, Yonehara H, Ishikawa T, Furukawa M, Fukutsu K, Sun Q, Hou C, Zhang S, Akiba S (2005) Rn-Tn discriminative measurements and their dose estimates in Chinese loess plateau. Int Congr 1276:76–80

    Article  Google Scholar 

  16. Shang B, Chen B, Gao Y, Wang Y, Cui H, Li Z (2005) Thoron levels in traditional Chinese residential dwellings. Radiat Environ Biophys 44(3):193–199

    Article  CAS  Google Scholar 

  17. Tschiersch J, Haninger T (2006) Comments on “Adjusting Lung Cancer Risks for Temporal and Spatial Variations in Radon Concentrations in Dwellings in Gansu Province, China” by Lubin et al. (Radiat. Res. 163, 571-579, 2005). Radiat Res 166:38–69

    Article  Google Scholar 

  18. Yamada Y, Sun Q, Tokonami S, Akiba S, Zhou W, Hou C, Zhang S, Ishikawa T, Furukawa M, Fukutsu K, Yonehara H (2006) Radon-thoron discriminative measurements in Gansu Province, China, and their implication for dose estimates. J Toxicol Environ Health Part A 69(7):723–734

    Article  CAS  Google Scholar 

  19. Shang B, Tschiersch J, Cui H, Xia YX (2008) Radon survey in dwellings of Gansu, China: the influence of thoron and an attempt for correction. Radiat Environ Biophys 47(3):367–373

    Article  Google Scholar 

  20. Lu X, Li LY, Zhang X (2009) An environmental risk assessment of Radon in Lantian Karst Cave of Shaanxi, China. Water Air Soil Pollut 198(1):307–316

    Article  CAS  Google Scholar 

  21. Radford EP (1985) Radon daughters and lung cancer. N Engl J Med 313(313):1610–1611

    CAS  PubMed  Google Scholar 

  22. Archer VE (1987) Lung cancer risks of underground miners: cohort and case-control studies. Yale J Biol Med 61(3):183–193

    Google Scholar 

  23. Howe GR, Nair RC, Newcombe HB, Miller AB, Abbatt JD (1986) Lung cancer mortality (1950-80) in relation to radon daughter exposure in a cohort of workers at the Eldorado Beaverlodge uranium mine. J Natl Cancer Inst 77(2):357–362

    CAS  PubMed  Google Scholar 

  24. Kristan J, Kobal I (1973) A modified scintillation cell for the determination of radon in uranium mine atmosphere. Health Phys 24(1):103–104

    CAS  PubMed  Google Scholar 

  25. Cohen BL (1982) Radon daughter exposure to uranium miners. Health Phys 42(42):449–457

    Article  CAS  Google Scholar 

  26. Inoue K, Hosoda M, Tokonami S, Ishikawa T, Fukushi M (2013) Investigation of radon and thoron concentrations in a landmark skyscraper in Tokyo. J Radioanal Nucl Chem 298(3):2009–2015

    Article  CAS  Google Scholar 

  27. Sugino M, Tokonami S, Zhuo W (2005) Radon and thoron concentrations in offices and dwellings of the Gunma prefecture, Japan. J Radioanal Nucl Chem 266(2):205–209

    Article  CAS  Google Scholar 

  28. Ćurguz Z, Stojanovska Z, Žunić ZS, Kolarž P, Ischikawa T, Omori Y, Mishra R, Sapra BK, Vaupotič J, Ujić P, Bossew P (2015) Long-term measurements of radon, thoron and their airborne progeny in 25 schools in Republic of Srpska. J Environ Radioact 148:163–169

    Article  Google Scholar 

  29. Stojanovska Z, Zunic ZS, Bossew P, Bochicchio F, Carpentieri C, Venoso G, Mishra R, Rout RP, Sapra BK, Burghele BD, Cucos-Dinu A (2014) Results from time integrated measurements of indoor radon, thoron and their decay product concentrations in schools in the Republic of Macedonia. Radiat Prot Dosimetry 162(1–2):152–156

    Article  CAS  Google Scholar 

  30. Afolabi OT, Esan DT, Banjoko B, Fajewonyomi BA, Tobih JE, Olubodun BB (2015) Radon level in a Nigerian University Campus. BMC Res Notes 8:677

    Article  Google Scholar 

  31. Stojanovska Z, Boev B, Zunic ZS, Ivanova K, Ristova M, Tsenova M, Ajka S, Janevik E, Taleski V, Bossew P (2016) Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments. Radiat Environ Biophys 55(2):171–183

    Article  CAS  Google Scholar 

  32. Porstendörfer J, Butterweck G, Reineking A (1994) Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters. Health Phys 67(3):283–287

    Article  Google Scholar 

  33. Steck JD (2009) Annual average indoor radon variations over two decades. Health Phys 96(1):37–47

    Article  CAS  Google Scholar 

  34. Wallner P, Munoz U, Tappler P, Wanka A, Kundi M, Shelton JF, Hutter HP (2015) Indoor environmental quality in mechanically ventilated, energy-efficient buildings vs. conventional buildings. Int J Environ Res Public Health 12(11):14132–14147

    Article  CAS  Google Scholar 

  35. Boice JDJR (1997) Radon, your home or mine? Radiat Res 147(2):135–137

    Article  CAS  Google Scholar 

  36. Wang Z (1992) Radon level in China and elevated indoor exposure in carbon brick and cave dwellings. In: Proceedings of the international conference on radiattion effects and protection, pp 325–328

  37. Barazza F, Gfeller W, Palacios M, Murith C (2015) An investigation of the potential causes for the seasonal and annual variations in indoor radon concentrations. Radiat Prot Dosimetry 167(1–3):75–81

    Article  CAS  Google Scholar 

  38. Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60(6):807–815

    Article  CAS  Google Scholar 

  39. Gadd MS, Borak TB (1995) In-situ determination of the diffusion coefficient of 222Rn in concrete. Health Phys 68(6):817–822

    Article  CAS  Google Scholar 

  40. Pal MVD, Graaf ERVD, Meijer RJD, Hendriks NA (2001) Experimental set-up for measuring diffusive and advective transport of radon through building materials. Sci Total Environ 272(1–3):315–321

    PubMed  Google Scholar 

  41. ICRP (1993) ICRP Publication 65: Protection Against Radon-222 at Home and at Work. http://www.icrp.org/publication.asp?id=ICRP

Download references

Acknowledgements

This work was supported by the natural science foundation of Shandong Province (ZR2015HL099 and ZR2014JL016) and supported by the youth innovation fundation of Weifang medical university (K1302016) and supported by Scientific and Technological Project of Weifang Science and Technology Bureau (20121234), the authors express gratitude for financially support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanwei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, W., Shan, H. et al. Radon survey in office room and effective dose estimation for staff. J Radioanal Nucl Chem 324, 561–568 (2020). https://doi.org/10.1007/s10967-020-07082-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07082-z

Keywords

Navigation