Skip to main content
Log in

Per atom muon capture ratios and effects of molecular structure on muon capture by γ-Fe2O3 and Fe3O4

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An elemental analysis method utilizing muons has been demonstrated to be effective for non-destructive and quantitative analysis of precious bulk materials. In muon capture process, molecular structure dependence was known, and this property has the potential to be used to identify chemical structure in addition to elemental composition. Before these potential applications, fundamental studies examining the muon capture process are necessary. In this study, muon capture ratios for two iron oxide compounds, which are both important in earth science, γ-Fe2O3 (maghemite) and Fe3O4 (magnetite), were measured. The measured muon capture ratios were A(Fe/O) = 2.34 ± 0.03 and A(Fe/O) = 2.77 ± 0.03 for γ-Fe2O3 and Fe3O4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ninomiya K (2019) Non-destructive, position-selective, and multi-elemental analysis method involving negative muons. J Nucl Radiochem Sci 19:8–13

    CAS  Google Scholar 

  2. Ninomiya K, Nagatomo T, Kubo K, Ito TU, Higemoto W, Kita M, Shinohara A, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T (2012) Development of nondestructive and quantitative elemental analysis method using calibration curve between muonic X-ray intensity and elemental composition in bronze. Bull Chem Soc Jpn 85:228–230. https://doi.org/10.1246/bcsj.20110151

    Article  CAS  Google Scholar 

  3. Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo MK, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M (2014) A new X-ray fluorescence spectroscopy for extraterrestrial materials using muon beam. Sci Rep 4:5072. https://doi.org/10.1038/srep05072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ninomiya K, Kubo MK, Nagatomo T, Higemoto W, Ito TU, Kawamura N, Strasser P, Shimomura K, Miyake Y, Suzuki T, Kobayashi Y, Sakamoto S, Shinohara A, Saito T (2015) Nondestructive elemental depth-profiling analysis by muonic X-ray measurement. Anal Chem 87:4597–4600. https://doi.org/10.1021/acs.analchem.5b01169

    Article  CAS  PubMed  Google Scholar 

  5. Schellenberg L, Robert-Tissot B, Käser K, Schaller LA, Schneuwly H, Fricke G, Glückert S, Mallot G, Shera EB (1980) Systematics of nuclear charge radii of the stable molybdenum isotopes from muonic atoms. Nucl Phys A 333:333–342. https://doi.org/10.1016/0375-9474(80)90100-1

    Article  Google Scholar 

  6. Ninomiya K, Kudo T, Strasser P, Terada K, Kawai Y, Tampo M, Miyake Y, Shinohara A, Kubo MK (2019) Development of non-destructive isotopic analysis methods using muon beams and their application to the analysis of lead. J Radioanal Nucl Chem 320:801–805. https://doi.org/10.1007/s10967-019-06506-9

    Article  CAS  Google Scholar 

  7. Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S (2017) Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC A new X-ray fluorescence spectroscopy for extraterrestrial materials using muon beam. Sci Rep 7:15478. https://doi.org/10.1038/s41598-017-15719-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hampshire BV, Butcher K, Ishida K, Green G, Paul DM, Hillier AD (2019) Using negative muons as a probe for depth profiling silver roman coinage. Heritage 2:400–407. https://doi.org/10.3390/heritage2010028

    Article  Google Scholar 

  9. Ninomiya K, Ito TU, Higemoto W, Kawamura N, Strasser Pm Nagatomo T, Shimomura K, Miyake Y, Kita M, Shinohara A, Kubo MK, Miura T (2019) Negative muon capture ratios for nitrogen oxide molecules. J Radioanal Nucl Chem 319:767–773. https://doi.org/10.1007/s10967-018-6366-3

    Article  CAS  Google Scholar 

  10. Schneuwly H, Pokrovsky VI, Ponomarev LI (1978) On Coulomb capture ratios of negative mesons in chemical compounds. Nucl Phys Sect A 312:419–426. https://doi.org/10.1016/0375-9474(78)90601-2

    Article  Google Scholar 

  11. Imanishi N, Miyamoto S, Takeuchi Y, Shinohara A, Kaji H, Yoshimura Y (1988) Chemical-bond effect of pion-capture ratios in some alkali-metal compounds. Phys Rev A 37:43–48. https://doi.org/10.1103/PhysRevA.37.43

    Article  CAS  Google Scholar 

  12. Yoshida G, Ninomiya K, Inagaki M, Higemoto W, Strasser P, Kawamura N, Shimomura K, Miyake Y, Miura T, Kubo MK, Shinohara A (2019) Initial quantum levels of captured muons in CO, CO2, and COS. J Radioanal Nucl Chem 320:283–289. https://doi.org/10.1007/s10967-019-06470-4

    Article  CAS  Google Scholar 

  13. Cook S, D'Arcy R, Edmonds A, Fukuda M, Hatanaka K, Hino Y, Kuno Y, Lancaster M, Mori Y, Ogitsu T, Sakamoto H, Sato A, Tran NH, Truong NM, Wing M, Yamamoto A, Yoshida M (2017) Delivering the world’s most intense muon beam. Phys Rev Accel Beams 20:030101. https://doi.org/10.1103/PhysRevAccelBeams.20.030101

    Article  Google Scholar 

  14. Hartmann FJ, Egidy T, Bergmann R, Kleber M, Pfeiffer HJ, Springer K, Daniel H (1976) Measurement of the muonic X-ray cascade in metallic iron. Phys Rev Lett 37:331–334. https://doi.org/10.1103/PhysRevLett.37.331

    Article  CAS  Google Scholar 

  15. Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR (2005) The EGS5 code system. SLAC-Report 730

  16. Stanislaus S, Entezami F, Bagheri A, Measday DF, Garner D (1987) Atomic capture ratios for muons in oxides. Nucl Phys A 475:630–641. https://doi.org/10.1016/0375-9474(87)90229-6

    Article  Google Scholar 

  17. Egidy T, Denk W, Bergmann R, Daniel H, Hartmann FJ, Reidy JJ, Wilhelm W (1981) Muonic Coulomb capture ratios and X-ray cascades in oxides. Phys Rev A 23:427–440. https://doi.org/10.1103/PhysRevA.23.427

    Article  Google Scholar 

  18. Schneuwly H, Boschung M, Kaeser K, Piller G, Ruetschi A, Schaller LA, Schellenberg L (1983) Capture of negative muons in cubic and hexagonal structures of carbon and boron nitride. Phys Rev A 27:950–960. https://doi.org/10.1103/PhysRevA.27.950

    Article  CAS  Google Scholar 

  19. Stanislaus S, Entezami F, Bagheri A, Measday DF, Garner D (1987) Atomic capture of muons and density. Nucl Phys A 475:642–656. https://doi.org/10.1016/0375-9474(87)90230-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant-in-Aid for Scientific Research C (18K11922) and Grant-in-Aid for Scientific Research on Innovative Areas (18H05457). The muon beam experiment at the MuSIC-M1 beamline in RCNP was conducted as E529 experiment in RCNP proposal number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ninomiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninomiya, K., Kajino, M., Inagaki, M. et al. Per atom muon capture ratios and effects of molecular structure on muon capture by γ-Fe2O3 and Fe3O4. J Radioanal Nucl Chem 324, 403–408 (2020). https://doi.org/10.1007/s10967-020-07065-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07065-0

Keywords

Navigation