Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry


Highly sensitive nondestructive HPGe gamma-ray spectrometry was used for the analysis of the cosmogenic (26Al) and primordial (40K, 238U, and 232Th) radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites. The measured 26Al activities were very different (84.0 ± 4.8 dpm/kg vs. 8.4 ± 1.2 dpm/kg, respectively), mainly because of different cosmic-ray exposure ages of the investigated meteorites. The pre-atmospheric radii were 5 ± 1 cm and 11 ± 2 cm, respectively, which would result in total pre-atmospheric masses in the range of 0.7–2.5 kg and 7–23 kg, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Warren PH (2005) Meteorit Planet Sci 40:477–506

    CAS  Article  Google Scholar 

  2. 2.

    Meteoritical Bulletin Database (2019)

  3. 3.

    Korotev RL (2019) Lunar meteorites.

  4. 4.

    Eugster O, Herzog GF, Marti K, Caffee MW (2006) Irradiation records, cosmic ray exposure ages, and transfer time of meteorites. In: Lauretta D, McSween HY Jr (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson

    Google Scholar 

  5. 5.

    Herzog GF (2005) Cosmic-ray exposure ages of meteorites. In: Davis AM (ed) Meteorites, planets, and comets. Elsevier, Amsterdam

    Google Scholar 

  6. 6.

    Jull AJT (2001) Terrestrial ages of meteorites. In: Peuker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Kluwer, New York, pp 241–266

    Google Scholar 

  7. 7.

    Kutschera W (2016) Adv Phys 1:570–595

    CAS  Google Scholar 

  8. 8.

    Jull AJT, Burr GS, Beck JW, Hodgins GWL, Biddulph DL, McHargue LR, Lange TE (2008) Accelerator mass spectrometry of long-lived light radionuclides. In: Povinec PP (ed) Analysis of environmental radionuclides. Elsevier, Amsterdam, pp 240–262

    Google Scholar 

  9. 9.

    Povinec PP (2005) J Radioanal Nucl Chem 263:413–417

    CAS  Article  Google Scholar 

  10. 10.

    Povinec PP (2008) J Radioanal Nucl Chem 276:771–777

    CAS  Article  Google Scholar 

  11. 11.

    Povinec PP, Sykora I, Porubcan V, Jeskovsky M (2009) J Radioanal Nucl Chem 282:805–808

    CAS  Article  Google Scholar 

  12. 12.

    Laubenstein M, Hult M, Gasparro J, Arnold D, Neumaier S, Heusser G, Koehler M, Povinec PP, Reyss JL, Schwaiger M, Theodorsson P (2004) Appl Rad Isotopes 61:167–172

    CAS  Article  Google Scholar 

  13. 13.

    Povinec PP, Comanducci JF, Levy-Palomo I (2004) Appl Rad Isotopes 61:85–93

    CAS  Article  Google Scholar 

  14. 14.

    Povinec PP, Comanducci JF, Levy-Palomo I (2005) J Radioanal Nucl Chem 263:441–445

    CAS  Article  Google Scholar 

  15. 15.

    Povinec PP (2012) J Anal Sci Technol 3:42–71

    CAS  Article  Google Scholar 

  16. 16.

    Povinec PP (2013) J Radioanal Nucl Chem 295:537–544

    CAS  Article  Google Scholar 

  17. 17.

    Povinec PP (2018) J Radioanal Nucl Chem 318:1573–1585

    CAS  Article  Google Scholar 

  18. 18.

    Povinec PP (2018) J Radioanal Nucl Chem 316:893–931

    CAS  Article  Google Scholar 

  19. 19.

    Povinec PP (2019) J Radioanal Nucl Chem.

    Article  Google Scholar 

  20. 20.

    Kovacik A, Sykora I, Povinec PP, Porubcan V (2012) J Radioanal Nucl Chem 293:339–345

    CAS  Article  Google Scholar 

  21. 21.

    Kovacik A, Sykora I, Povinec PP (2013) J Radioanal Nucl Chem 298:665–672

    CAS  Article  Google Scholar 

  22. 22.

    Sykora I, Jeskovsky M, Janik R, Holy K, Chudy M, Povinec PP (2008) J Radioanal Nucl Chem 276:779–787

    CAS  Article  Google Scholar 

  23. 23.

    Laboratoire National Henry Becquerel (2013) Nucleide.

  24. 24.

    Bouvier A, Gattacceca J, Grossman J, Metzler K (2017) Meteorit Planet Sci 52:2411.

    CAS  Article  Google Scholar 

  25. 25.

    Wittmann A et al (2014) Meteorit Planet Sci 49:5352

    Google Scholar 

  26. 26.

    Wittmann A et al (2015) Lunar Planet Sci XLVI:1141

    Google Scholar 

  27. 27.

    Ferrière L, Meier MMM, Fernandes VA, Fritz J, Greshake A, Barrat A, Böttger U, Bouvier A, Brandstätter F, Busemann H, Korotev RL, Maden C, Magna T, Schmitt-Kopplin Ph, Schrader DL, Wadhwa M (2017) Lunar Planet Sci XLVIII:1621

    Google Scholar 

  28. 28.

    Ruzicka A, Grossman J, Bouvier A, Agee CB (2013) Meteorit Planet Sci 48:3820.

    CAS  Article  Google Scholar 

  29. 29.

    Povinec PP, Pham MK, Sanchez-Cabeza JA, Barci-Funel G, Bojanowski R, Boshkova T, Burnett WC, Carvalho F, Chapeyron B, Cunha IL, Dahlgaard H, Galabov N, Fifield LK, Gastaud J, Geering JJ, Gomez IF, Green N, Hamilton T, Ibanez FL, Ibn Majah M, John M, Kanish G, Kenna TC, Kloster M, Korun M, Liong Wee Kwong L, La Rosa J, Lee S-H, Levy-Palomo I, Malatova M, Maruo Y, Mitchell P, Murciano IV, Nelson R, Nourredine A, Oh J-S, Oregioni B, Le Petit G, Pettersson HBL, Reineking A, Smedley PA, Suckow A, van der Struijs TDB, Voors PI, Yoshimizu K, Wyse E (2008) J Radioanal Nucl Chem 273:383–393

    Article  Google Scholar 

  30. 30.

    Pham MK, Betti M, Povinec PP, Benmansour M, Bojanowski R, Bouisset P, Calvo EC, Ham GJ, Holm E, Ilchmann C, Kloster M, Kanish G, Koehler M, La Rosa J, Legarda F, Llaurado M, Nourredine A, Oh JS, Pellicciari M, Rieth U, RodriguezyBaena AM, Sanchez-Cabeza JA, Satake H, Schilkowski J, Takeishi M, Thebault H, Varga Z (2010) J Radioanal Nucl Chem 283:851–859

    CAS  Article  Google Scholar 

  31. 31.

    CERN (1993) GEANT detector description and simulation tool. CERN Program Library Office, CERN, Geneva

    Google Scholar 

  32. 32.

    Serefiddin F, Ma P, Herzog GF, Reedy RC, Knie K, Rugel G, Faestermann T, Korschinek G (2011) Lunar Planet Sci XLII:1392

    Google Scholar 

  33. 33.

    Nishiizumi K, Caffee MW, Jull AJT (2016) Lunar Planet Sci XLVII:1669

    Google Scholar 

  34. 34.

    Lavrukhina AK, Ustinova GK (1990) Meteorites as Probes of Cosmic Ray Variations. Nauka, Moscow

    Google Scholar 

  35. 35.

    Alexeev VA, Laubenstein M, Povinec PP, Ustinova GK (2019) Sol Syst Res. 53:98–115

    CAS  Article  Google Scholar 

  36. 36.

    Leya I, Masarik J (2009) Meteorit Planet Sci 44:1061–1086

    CAS  Article  Google Scholar 

  37. 37.

    Povinec PP, Masarik J, Sykora I, Kovacik A, Beno J, Laubenstien M, Porubcan V (2015) Meteorit Planet Sci 50:880–892

    CAS  Article  Google Scholar 

  38. 38.

    Povinec PP, Laubenstein M, Ferrière L, Brandstatter F, Sykora I, Kovacik A, Jull AJT, Topa D, Koeberl C (2015) Meteorit Planet Sci 50:273–286

    CAS  Article  Google Scholar 

  39. 39.

    Nishiizumi K, Caffee MW (2001) Meteorit Planet Sci 36:A148–149

    Google Scholar 

  40. 40.

    Nishiizumi K, Arnold JR, Kohl CP, Caffee MW, Masarik J, Reedy RC (2009) Geochim Cosmochim Acta 73:2163–2176

    CAS  Article  Google Scholar 

  41. 41.

    Povinec PP, Sýkora I, Kovacik A, Koeberl C (2016) J Radioanal Nucl Chem 307:2403–2407

    CAS  Article  Google Scholar 

  42. 42.

    Schulz T, Povinec PP, Ferrière L, Jull AJT, Kovacik A, Sykora I, Tusch J, Munker C, Topa D, Koeberl C (2020) Meteorit Planet Sci.

    Article  Google Scholar 

  43. 43.

    Povinec PP, Sýkora I, Jull AJT, Kornoš L, Macke RJ, Porubčan V, Tóth J (2019) 82nd Annual Meeting of the Meteoritical Society, LPI Contrib No. 2157, 6309

  44. 44.

    Povinec PP, Sýkora I, Macke RJ, Toth J, Kornos L, Porubcan V (2019) Planet Space Sci (submitted)

  45. 45.

    Eugster O, Weigel A, Polnau E (1997) Geochim Cosmochim Acta 61:2749–2757

    CAS  Article  Google Scholar 

  46. 46.

    Povinec PP, Koeberl C, Jull AJT, Sýkora I, Ferrière L, Kováčik A (2019). 50th Lunar Planet Sci Conf, LPI Contrib No. 2132, 1905

  47. 47.

    Wasson JT, Kallemeyn GW (1988) Phil Trans Roy Soc London A 325:535–544

    CAS  Article  Google Scholar 

  48. 48.

    Masarik J, Reedy R (1994) Lunar Planet Sci XXVI:901–902

    Google Scholar 

Download references


The Bratislava group acknowledges a support provided by the Slovak Science and Grant Agency (VEGA-1/0891/17) and by the EU Research and Development Operational Program funded by the ERDF (Projects Nos. 26240120012 and 26240120026). We are grateful to three anonymous reviewers for constructive comments.

Author information



Corresponding author

Correspondence to Pavel P. Povinec.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in publishing this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Oued Awlitis 001 and Galb Inal meteorites investigated in this paper were provided by the Natural History Museum in Vienna (Austria).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Povinec, P.P., Sýkora, I., Ferrière, L. et al. Analyses of radionuclides in the Oued Awlitis 001 and Galb Inal lunar meteorites by HPGe gamma-ray spectrometry. J Radioanal Nucl Chem 324, 349–357 (2020).

Download citation


  • Lunar meteorites
  • Oued Awlitis 001
  • Galb Inal
  • HPGe gamma-ray spectrometry
  • Pre-atmospheric meteorite radius