Skip to main content
Log in

Radiometric signature as an indicator of radiological pollution on Rio Doce after the disaster in tailings dam

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Doce River suffered major environmental impacts throughout their courses due to the disruption of the tailings dam of the company Samarco—Brazil, characterizing it as the biggest accident in the mineral area throughout the southern hemisphere. The radiometric signature obtained for natural radionuclides of occurrence in sediment is an indicator of radiological pollution caused by accidents. By means of gamma-ray spectrometry, this work determined the radioactivity levels in sediments from samples collected before (2014) and after (2015) the accident obtaining indicators of pollution radiometric, namely radium equivalent, external and internal radiological risk, and compare them with the reference levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jones D (2004) The relative importance of physical, chemical and biological processes in the Irish sea. Earthwise Issue 21. British Geological Survey. NERC 2004

  2. Giglio VJ, Freitas MO (2013) Caracterização da pesca artesanal com rede de camboa na reserva extrativista de Cassurubá-BA. Bitemas 26(2):249–259

    Google Scholar 

  3. Pereira MD, Siegle E, Miranda LB, Schettini CAF (2010) Hidrodinâmica e Transporte da Material Particulado em Suspensão em um Estuário dominado por Maré: Estuário Caravelas (BA). Rev Bras Geof 28(3):427–444

    Article  Google Scholar 

  4. INSTITUTO CHICO MENDES DA BIODIVERSIDADE (ICMBio) (2017) Relatório Consolidado da Pluma do Rio Doce após Rompimento da Barragem de Mariana-MG, Universidade Federal do Espírito Santo (UFES), p 254

  5. Agência Nacional de Águas (ANA) (2015) Monitoramento Especial da Bacia do Rio Doce - Relatórios 1&2, 2015

  6. Davis J (2004) Naturally occurring radioactive materials. Earthwise Issue 21. British Geological Survey. NERC, 2004

  7. Wang J, Liu J, Chen Y, Song G, Chen D, Xiao T, Wu S, Chen F, Yin M (2016) Technologically elevated natural radioactivity and assessment of dose to workers around a granitic uranium deposit area, China. J Radioanl Nucl Chem 310:733–741

    Article  CAS  Google Scholar 

  8. Spacov ICG (2016) Monitoração de trabalhadores expostos à radiação natural em minas no seridó do nordeste brasileiro. Tese de Doutorado. UFPE—Universidade Federal de Pernambuco, Recife

  9. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1996) In: Forty-second Session of UNSCEAR, United Nations, New York. A/AC 82/R 526

  10. Suresh S, Joshi VM, Jha SK, Tripathi RM (2017) Distribution of uranium in sediment of creek ecosystem. J. Radioanl Nucl Chem 313:79–83

    Article  CAS  Google Scholar 

  11. Carmo RF (2018) Avaliação dos níveis de radioatividade natural e do risco radiológico na foz do Rio Doce antes e depois do rompimento da barragem de Fundão. Tese de Doutorado. IRD, Rio de Janeiro

  12. Chechev VP et al. (2011) Table of radionuclides (Vol. 6—A = 22 to 242). Monographie BIPM-5, Sèvres, p.85-89

  13. Souza PS, Clain AF, Trindade Filho OL, Oliveira EM, Delgado JU, Lopes RT (2019) Production of spiked vegetation samples containing γ-emitting radionuclides for proficiency testing. JRNC 321(3):851–856

    Google Scholar 

  14. Boshkova T, Minev L (2001) Corrections for self-attenuation in gamma-ray spectroscopy of bulk samples. Appl Radiat Isot 54:777–783. https://doi.org/10.1016/S0969-8043(00)00319-5

    Article  CAS  PubMed  Google Scholar 

  15. Cutshall NH, Larsen ILE, Olsen CR (1983) Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl Instrum Methods 206:309–312

    Article  CAS  Google Scholar 

  16. GENIE-2000 (2013) Spectroscopy Software Customization Tools. Canberra Industries, USA

  17. Carneiro PFP, Filho JA, Silva CM (2009) Environmental Radioactivity on Suape Estuary: Impact of the Installation of Oil Refinary. International Nuclear Atlantic Conference—INAC 2009

  18. Dlugosz-lisiecka M, Bem H (2013) Fast procedure for self-absorption correction for low γ energy radionuclide 210Pb determination in solid environmental samples. J Radioanal Nucl Chem 298:495–499

    Article  CAS  Google Scholar 

  19. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-product. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  20. Medhat ME (2009) Assessment of radiation hazards due to natural radioactivity in some building materials used in Egyptian. Radiat Protect Dosim 133:177–185

    Article  CAS  Google Scholar 

  21. Organization for Economic Cooperation and Development (OECD) (1979) Exposure to radiation from natural radioactivity in building materials. Report by a Group of Experts of the OECD Nuclear Energy Agency, OECD, Paris

  22. Ademola JA (2008) Determination of natural radionuclides content in some building materials in Nigeria by gamma-ray spectrometry. Health Phys 94:43–48

    Article  CAS  Google Scholar 

  23. Hassan NM, Ishikawa T, Hosoda M, Sorimachi A, Tokonami S, Fukushi M, Sahoo SK (2010) Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan. J Radioanal Nucl Chem 283:15–21

    Article  CAS  Google Scholar 

  24. United Nations Scientific Committee no the Effects of Atomic Radiation (UNSCEAR) (1977) Report to the general assembly with annexes

  25. Krieger R (1981) Radioactivity of construction materials. Betonwerk Fertigteil Tech 7:468–473

    Google Scholar 

  26. International Commission on Radiological Protection (ICRP) (1977) Recommendations of the ICRP. ICRP Publication 26. Ann. ICRP 1(3)

  27. Sapucaia NS, Argollo RM, Barbosa JSF (2005) Teores de potássio, urânio, tório e taxa de produção de calor radiogênico no embasamento adjacente às bacias sedimentares de Camamu e Almada, Bahia, Brasil. Rev Bras Geof 23(4):453–475

    Article  Google Scholar 

  28. Al-hamameh IF, Awadallah MI (2009) Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan. Radiat Meas 44:102–110

    Article  Google Scholar 

  29. Kurnaz A, Kücükömeroglu B, Keser R, Okumosoglu NT, Korkmaz F, Kaharan G, Çevik U (2007) Determination of radioactivity levels and hazards of soils and sediment samples in Firtina Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289

    Article  CAS  Google Scholar 

  30. Almayahi BA, Tajuddin AA, Jaafar AA (2012) Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang, Malaysia. Radiat Phys Chem 81:1547–1558

    Article  CAS  Google Scholar 

  31. Ravisankar R, Sivakumar S, Chandrakaran A, Jebakumar JPP, Vijayalakshami I, Vijayagopal P, Venkatraman B (2014) Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamilnadu, India with statistical approach. Radiat Phys Chem 103:89–98

    Article  CAS  Google Scholar 

  32. Al-trabulsy HA, Khater AEM, Habbani FI (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf Aqaba. Radiat Phys Chem 80:343–348

    Article  CAS  Google Scholar 

  33. Ravisankar R, Chandramohan J, Chandrasekaran A, Jebakumar J, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull 97(1–2):419–430. https://doi.org/10.1016/j.marpolbul.2015.05.058

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Wu X, Jiang Z, Wang W, Lu J, Lin J, Wang L, Hsia Y (2005) Radioactivity concentrations in soils of the Xiazhuang granite area China. Appl Radiat Isot 63:255–259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. U. Delgado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmo, R.F., Filho, O.L.T., Delgado, J.U. et al. Radiometric signature as an indicator of radiological pollution on Rio Doce after the disaster in tailings dam. J Radioanal Nucl Chem 323, 741–747 (2020). https://doi.org/10.1007/s10967-019-07009-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-07009-3

Keywords

Navigation