Skip to main content
Log in

Decontamination of low-level contaminated water from radioactive cesium and cobalt using microalgae

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study selects microalgae suitable for the decontamination of radioactive cobalt (Co-60) in radioactive solutions based on the decontamination efficiency of Co-60 and Cs-137 by various microalgae. The biosorption rates of Co-60 in the low-level contaminated water have been measured using three different types of microalgae Haematococcus sp., Vacuoliviride crystalliferum, and Chlorella vulgaris, which are known to uptake Cs-137 and Sr-90 effectively. In the comparative experiments, Haematococcus sp. showed the highest decontamination efficiency within 48 h, and it could be a suitable bio-adsorbent out of three types of microalgae for the removal of Co-60. Haematococcus sp. also removed 88.0% of Cs-137 from contaminated water for 48 h. Our findings indicated that the low-level radioactive solution was decontaminated to a very low-level state through the biosorption process of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu Y, Kang J, Yuan J (2018) The prospective of nuclear power in China. Sustainability 10(6):2086

    Article  Google Scholar 

  2. Alam F, Sarkar R, Chowdhury H (2019) Nuclear power plants in emerging economies and human resource development: a review. Energy Procedia 160:3–10

    Article  Google Scholar 

  3. Kim GN, Kim SS, Park UR, Moon JK (2015) Decontamination of soil contaminated with cesium using electrokinetic-electrodialytic method. Electrochim Acta 181:233–237

    Article  CAS  Google Scholar 

  4. Godbee HW (1973) Use of evaporation for the treatment of liquids in the nuclear industry (No. ORNL-4790). Oak Ridge National Lab., Tenn.(USA)

  5. Osmanlioglu AE (2018) Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl Eng Technol 50(6):886–889

    Article  CAS  Google Scholar 

  6. Palamarchuk M, Egorin A, Tokar E, Tutov M, Marinin D, Avramenko V (2017) Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins. J Hazard Mater 321:326–334

    Article  CAS  Google Scholar 

  7. Collins ED, Benker DE, Spencer BB, Baron P, Dinh B, Bond WD, Campbell DO (2003) Development of the UREX+ co-decontamination solvent extraction process. In: Proceedings of Global, pp 16–20

  8. Menozzi FD, Michel A, Pora H, Miller AOA (1990) Absorption method for rapid decontamination of solutions of ethidium bromide and propidium iodide. Chromatographia 29(3–4):167–169

    Article  CAS  Google Scholar 

  9. Xiangxue W, Long C (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62(8):933–967

    Article  Google Scholar 

  10. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181:817–831

    Article  CAS  Google Scholar 

  11. Iwamoto K, Shiraiwa Y (2017) Accumulation of cesium by aquatic plants and algae. In: Gupta DK, Walther C (eds) Impact of cesium on plants and the environment. Springer, Cham, pp 171–185

    Chapter  Google Scholar 

  12. Kim JH, Gibb HJ, Howe PD (2006) Cobalt and inorganic cobalt compounds. World Health Organizaiton, Geneva

    Google Scholar 

  13. Luo W, Bai Z, Zhu Y (2018) Fast removal of Co(ii) from aqueous solution using porous carboxymethyl chitosan beads and its adsorption mechanism. RSC Adv 8:13370–13387

    Article  CAS  Google Scholar 

  14. Islam MA, Morton DW, Johnson BB, Pramanik BK, Mainali B, Angove MJ (2018) Opportunities and constraints of using the innovative adsorbents for the removal of cobalt(II) from wastewater: a review. Environ Nanotechnol Monit Manage 10:35–456

    Google Scholar 

  15. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions—a brief review. RSC Adv 5:71658–71683

    Article  CAS  Google Scholar 

  16. Shimura H, Itoh K, Sugiyama A, Ichijo S, Ichijo M, Furuya F, Nakamura Y, Kitahara K, Kobayashi K, Yukawa Y, Kobayashi T (2012) Absorption of radionuclides from the Fukushima nuclear accident by a novel algal strain. PLoS ONE 7:e95903

    Article  Google Scholar 

  17. Lee KY, Lee SH, Lee JE, Lee S-Y (2019) Biosorption of radioactive cesium from contaminated water by microalgae Haematococcus pluvialis and Chlorella vulgaris. J Environ Manage 33:83–88

    Article  Google Scholar 

  18. Lee SY, Jung KH, Lee JE, Lee KA, Lee SH, Lee JY, Lee S-Y (2014) Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption. Bioresour Technol 172:449–452

    Article  CAS  Google Scholar 

  19. Nakamura R, Suzuki Y, Ueda T (1975) Influences of marine sediment on the accumulation of radionuclides by green alga (Ulva pertusa). J Radiat Res 16(4):224–236

    Article  CAS  Google Scholar 

  20. Adam C, Garnier-Laplace J (2003) Bioaccumulation of silver-110m, cobalt-60, cesium-137, and manganese-54 by the freshwater algae Scenedesmus obliquus and Cyclotella meneghiana and by suspended matter collected during a summer bloom event. Limnol Oceanogr 48(6):2303–2313

    Article  CAS  Google Scholar 

  21. Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga chlorella salina immobilized in alginate microbeads. Environ Sol Technol 26:1764–1770

    Article  CAS  Google Scholar 

  22. Kim TY, Lee SH, Lee S-Y (2019) Isolation and characterization of newly-discoverd astaxanthin-producing microalgae Haematococcus sp. (Haematococcaceae, Chlorophyta). Algae (to be submitted)

  23. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32(7):1077–1082

    Article  CAS  Google Scholar 

  24. Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531

    PubMed  PubMed Central  Google Scholar 

  25. Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23(4):721–726

    Article  CAS  Google Scholar 

  26. Kula M, Kalaji HM, Skoczowski A (2017) Culture density influence on the photosynthetic efficiency of microalgae growing under different spectral compositions of light. J Photochem Photobiol B 167:290–298

    Article  CAS  Google Scholar 

  27. Nakayama T, Nakamura A, Yokoyama A, Shiratori T, Inouye I, Ishida KI (2015) Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov. J Plant Res 128(2):249–257

    Article  Google Scholar 

  28. Fukuda SY, Iwamoto K, Atsumi M, Yokoyama A, Nakayama T, Ishida KI, Shiraiwa Y (2014) Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J Plant Res 127(1):79–89

    Article  CAS  Google Scholar 

  29. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  30. de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  31. Kim JD, Lee WS, Kim BM, Lee CG (2006) Proteomic analysis of protein expression patterns associated with astaxanthin accumulation by green alga Haematococcus pluvialis (Chlorophyceae) under high light stress. J Microbiol Biotechnol 16(8):1222–1228

    CAS  Google Scholar 

  32. Shin R, Adams E (2017) Cesium uptake in plants: mechanism, regulation and application for phytoremediation. In: Gupta DK, Walther C (eds) Impact of cesium on plants and the environment. Springer, Cham, pp 101–124

    Chapter  Google Scholar 

  33. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69(3):443–449

    Article  CAS  Google Scholar 

  34. Le Cloirec P, Andrè Y, Faur-Brasquet C, Gerente C (2003) Engineered biofilms for metal ion removal. Rev Environ Sci Biotechnol 2:177–192

    Article  Google Scholar 

  35. Vargas-Garcıa MC, Lopez MJ, Suarez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Nuclear R&D Program (20161520101210) of Korea Institute of Energy Technology Evaluation and Planning (KETEP) and Grant Number 2018M2B2A9065873 of National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Un Jang Lee or Seung-Yop Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.Y., Hong, J.E., Park, H.M. et al. Decontamination of low-level contaminated water from radioactive cesium and cobalt using microalgae. J Radioanal Nucl Chem 323, 903–908 (2020). https://doi.org/10.1007/s10967-019-07008-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-07008-4

Keywords

Navigation