Advertisement

Promising framework of nanocomposite materials: synthesis and radio-lanthanides labeling for nuclear medicine application

  • D. M. Imam
  • M. A. Youssef
  • M. F. AttallahEmail author
Article
  • 22 Downloads

Abstract

Incorporation of fulvic acid (FA) into the framework of hydroxyapatite particle to synthesis NHAP functionalized with FA (NHAP-FA) as a new smart nanocomposite is achieved. Some analytical methods such as EDX, FTIR, XRD, and TEM defined it. Preliminary study on the possible radiolabeling of NHAP-FA with 141,143Ce, 152,154Eu, 159,161Gd as represented radio-lanthanides that are gaining more attention in the last decades is carried out. The obtained results were revealed that a significant sorption affinity of radio-lanthanides (~ 98%). Application on the environmental remediation towards the removal of some radionuclides (152,154Eu, 60Co, 99Mo, 63Ni and 137Cs) has been evaluated.

Keywords

Nanotechnology Radiopharmaceutical Radiolabeling biomaterials Cesium sorption Nanomaterial 

Notes

References

  1. 1.
    Garashchenko BL, Dogadkin NN, Borisova NE, Yakovlev RY (2018) Sorption of 223Ra and 211Pb on modified nanodiamonds for potential application in radiotherapy. J Radioanal Nucl Chem 318:2415–2423.  https://doi.org/10.1007/s10967-018-6330-2 CrossRefGoogle Scholar
  2. 2.
    El-khouly SH, Attallah MF, Allan KF (2013) Studies on separation of binary mixture of Cs/Ba and Zn/Cu on zirconium antimonite as ion exchanger. Radiochemistry 55(5):486–491.  https://doi.org/10.1134/S106636221305006 CrossRefGoogle Scholar
  3. 3.
    Knapp FF, Dash A (2016) Radiopharmaceuticals for therapy. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2607-9 CrossRefGoogle Scholar
  4. 4.
    Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Edn 41(17):3130–3146CrossRefGoogle Scholar
  5. 5.
    Handley-Sidhu S, Renshaw JC, Yong P, Kerley R, Macaskie LE (2011) Nano-crystalline hydroxyapatite bio-mineral for the treatment ofstrontium from aqueous solutions. Biotechnol Lett 33:79–87.  https://doi.org/10.1007/s10529-010-0391-9 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wood MD, Beresford NA, Semenov DV, Yankovich TL, Copplestone D (2010) Radionuclide transfer to reptiles. Radiat Environ Biophys 49:509–530PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182:1567–1589CrossRefGoogle Scholar
  8. 8.
    Doat A, Fanjul M, Pellé F, Hollande E, Lebugle A (2003) Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells. Biomaterials 24:3365–3371PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Silva RJ, Nitsche H (1995) Actinide environmental chemistry. Radiochim Acta 70(71):377–396Google Scholar
  10. 10.
    Bünzli JCG, Brittain HG, DeVore GW, Loveland W (1989) In: Bünzli J-CG, Choppin GR (eds) Lanthanide probes in life, chemical and earth sciences. Elsevier, Amsterdam, pp 219–408Google Scholar
  11. 11.
    Mladenov N, Zheng Y, Simone B, Bilinski TM, McKnight DM, Nemergut D, Radloff KA, Rahman MM, Ahmed KM (2015) Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility. Environ Sci Technol 49:10815–10824.  https://doi.org/10.1021/acs.est.5b01962 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Islam KMS, Schuhmacher A, Gropp JM (2005) Humic acid substances in animals. Pak J Nutr 4:126–134CrossRefGoogle Scholar
  13. 13.
    Plaza C, García-Gil JC, Polo A, Senesi N, Brunetti G (2005) Proton binding by humic and fulvic acids from pig slurry and amended soils. J Environ Qual 34:1113–1117.  https://doi.org/10.2134/jeq2004.0378 CrossRefGoogle Scholar
  14. 14.
    Motojima H, Villareal MO, Han J, Isoda H (2011) Microarray analysis of immediate-type allergy in KU812 cells in response to fulvic acid. Cytotechnology 63:181–190.  https://doi.org/10.1007/s10616-010-9333-6 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gandy JJ, Meeding JP, Snyman JR (2012) Clinical study of the acute and sub-acute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clin Pharmacol 4:7–11.  https://doi.org/10.2147/CPAA.S25784 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Van Rensburg CEJ, Van Straten A, Dekker J (2000) An in vitro investigation of the antimicrobial activity of oxifulvic acid. J Antimicrob Chemother 46:853–854.  https://doi.org/10.1093/jac/46.5.853 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jo ByungWan, Jo JunHo, Lee Yunsung (2017) Development of functional nourishing cream using fulvic acid. J Pharm Biolog Sci 12(3):47–58.  https://doi.org/10.9790/3008-1203034758 CrossRefGoogle Scholar
  18. 18.
    Guzmán-Martinez L, Farías GA, Maccioni RB (2013) Tau oligomers as potential targets for Alzheimer’s diagnosis and novel drugs. Front Neurol 4:167.  https://doi.org/10.3389/fneur.2013.00167 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carlos CG, Leonardo G, Ricardo BM (2012) Shilajit: a natural phytocomplex with potential procognitive activity. Int J Alzheimer’s Dis 10:1–4.  https://doi.org/10.1155/2012/674142 CrossRefGoogle Scholar
  20. 20.
    Botes ME, Gilada IS, Snyman JR, Labuschagne JPL (2018) Carbohydrate-derived fulvic acid wellness drink: its tolerability, safety and effect on disease markers in pre-ART HIV-1 positive subjects. South Afr Fam Pract 60(3):91–96.  https://doi.org/10.1080/20786190.2017.1397381 CrossRefGoogle Scholar
  21. 21.
    Sherry L, Millhouse E, Lappin DF, Murray C, Culshaw S, Nile CJ (2013) Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health 13:47PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Imam DM, Moussa SI, Attallah MF (2019) Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material. J Radioanal Nucl Chem 319:997–1012CrossRefGoogle Scholar
  23. 23.
    Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Jun W, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62:933–967.  https://doi.org/10.1007/s11426-019-9492-4 CrossRefGoogle Scholar
  24. 24.
    Borai E, Attallah M, Koivula R, Paajanen A, Harjula R (2012) Separation of Europium from cobalt using antimony silicates in sulfate acidic media. Min Process Extr Metall Rev 33:204–219.  https://doi.org/10.1080/08827508.2011.562951 CrossRefGoogle Scholar
  25. 25.
    Shady SA, Attallah MF, Borai EH (2011) Efficient sorption of light rare earth elements using resorcinol-formaldehyde polymeric resin. Radiochemistry 53:396–400.  https://doi.org/10.1134/S106636221104010! CrossRefGoogle Scholar
  26. 26.
    El Afifi EM, Attallah MF, Borai EH (2016) Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J Environ Radioanal 151(1):156–165CrossRefGoogle Scholar
  27. 27.
    Rizk HE, Attallah MF, Ali AMI (2017) Investigations on sorption performance of some radionuclides, heavy metals and lanthanides using mesoporous adsorbent material. J Radioanal Nucl Chem 314:2475–2487.  https://doi.org/10.1007/s10967-017-5620-4 CrossRefGoogle Scholar
  28. 28.
    Liu X, Ma R, Wang X, Ma Y, Yang Y, Zhuang L, Zhang S, Jehan R, Chen J, Wang X (2019) Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ Pollut 252:62–73PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Attallah MF, Rizk SE, El Afifi EM (2018) Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. J Radioanal Nucl Chem 317:933–945.  https://doi.org/10.1007/s10967-018-5938-6 CrossRefGoogle Scholar
  30. 30.
    Attallah MF, Youssef MA, Imam DM (2019) Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides. Radiochmica Acta.  https://doi.org/10.1515/ract-2019-3108 CrossRefGoogle Scholar
  31. 31.
    Bagheri R, Jalilian AR, Bahrami-Samani A, Mazidi M, Ghannadi-Maragheh M (2011) Production of Holmium-166 DOTMP: a promising agent for bone marrow ablation in hematologic malignancies. Iran J Nucl Med 19(1):12–20Google Scholar
  32. 32.
    Browne E, Firestone RB, Shirley VS (1986) Table of radioactive isotopes. Wiley, New York, p 1050Google Scholar
  33. 33.
    Firestone RB, Eckstrom LP (2004) LBNL isotopes project-lunds universitet: table of radioactive isotopes, version 2.1. http://ie.lbl.gov/toi. Accessed 15 Apr 2012
  34. 34.
    Torrel S, Krane KS (2012) Neutron capture cross sections of 136,138,140,142Ce and the decays of 137Ce. Phys Rev C 86:034340.  https://doi.org/10.1103/PhysRevC.86.034340 CrossRefGoogle Scholar
  35. 35.
    Koning AJ, Rochman D, Kopecky J, Sublet Ch, Fleming M (2015) TENDL-2015: TALYS-based evaluated nuclear data library. http://www.talys.eu/tendl-2015/ (release date: 18 January 2016)
  36. 36.
    Attallah MF, Imam DM (2018) Green approach for radium isotopes removal from TENORM waste using humic substances as environmental friendly. Appl Radiat Isot 140:201–208.  https://doi.org/10.1016/j.apradiso.2018.07.019 CrossRefPubMedGoogle Scholar
  37. 37.
    Torres RA, Choppin GR (1984) Europium (III) and americium (III) stability constants with humic acid. Radiochim Acta 35:143–148CrossRefGoogle Scholar
  38. 38.
    Campitelli P, Velasco M, Ceppi S (2003) Charge development and acid-base characteristics of soil and compost humic acids. J Chil Chem Soc 48(3):91–96CrossRefGoogle Scholar
  39. 39.
    Budnyak TM, Yanovska ES, Kołodynska D, Sternik D, Pylypchuk IV, Ischenko MV, Ertykh VA (2016) Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim 125:1335–1351.  https://doi.org/10.1007/s10973-016-5581-9 CrossRefGoogle Scholar
  40. 40.
    Gao S, Cui J, Wei ZG (2009) Study on the fluoride adsorption of various apatite materials in aqueous solution. J Fluor Chem 130:1035–1041CrossRefGoogle Scholar
  41. 41.
    Brigante M, Zanini G, Avena M (2010) Effect of humic acids on the adsorption of paraquat by goethite. J Hazard Mater 184:241–247PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zhang J, Dai JL, Wang RQ, Li FS, Wang WX (2009) Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloid Surf A 335:194–201CrossRefGoogle Scholar
  43. 43.
    Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612.  https://doi.org/10.1002/jbm.10280 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Milne CJ, Kinniburgh DG, van Riemsdijk WH, Tipping E (2003) Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37:958–971PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Saeed A, Iqbal M, Akhtar MW (2005) Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117:65–73PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Edebali S, Pehlivan E (2016) Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technol 301:520–525CrossRefGoogle Scholar
  47. 47.
    Puigdomenech I (2008) HYDRA (Hydrochemical equilibrium constant database) and MEDUSA (Make equilibrium diagrams using sophisticated algorithms) Programs. Royal Institute of Technology, Sweden. http://www.kemi.kth.se/medusa
  48. 48.
    Yue REN, Xi WEI, Mi ZHANG (2008) Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. J Hazard Mater 158:14–22CrossRefGoogle Scholar
  49. 49.
    Kannamba B, Laxama RK, Apparao BV (2010) Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J Hazard Mater 175:939–948PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tan XL, Wang XK, Geckeis H, Rabung Th (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol 42:6532–6537PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bunina YZ, Bryleva K (2017) Sorption materials based on ethylene glycol dimethacrylate and methacrylic acid copolymers for rare earth elements extraction from aqueous solutions. Adsorpt Sci Technol 35(5–6):545–559.  https://doi.org/10.1177/0263617417701455 CrossRefGoogle Scholar
  52. 52.
    Alakhras F (2018) Kinetic studies on the removal of some lanthanide ions from aqueous solutions using amidoxime-hydroxamic acid polymer. J Anal Methods Chem.  https://doi.org/10.1155/2018/4058503 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yantasee W, Fryxell EG, Addleman SR, Wiacek JR, Koonsiripaiboon W, Pattamakomsan K, Sukwarotwat V, Xu J, Raymond NK (2009) Selective removal of lanthanides from natural waters, acidic streams and dialysate. J Hazard Mater 168:1233–1238PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jang SC, Kang S, Lee JY, Oh SY, Vilian ATE, Lee I, Han Y, Park JH, Cho WS, Roh C, Huh YS (2018) Nano-graphene oxide composite for in vivo imaging. Dove Med 13:221–234.  https://doi.org/10.2147/IJN.S148211 CrossRefGoogle Scholar
  55. 55.
    Sakr TM, Khowessah MT, Motaleb MO, Abd El-Bary AM, El-Kolaly ATM, Swidan MM (2018) I-131 doping of silver nanoparticlesplatform for tumor theranosis guided drug delivery. Eur J Pharm Sci.  https://doi.org/10.1016/j.ejps.2018.06.029 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Notni J, Pohle K, Wester JH (2012) Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res 2(1):28.  https://doi.org/10.1186/2191-219x-2-28 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chappell LL, Deal AK, Dadachova E, Brechbiel WM (2000) Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for 225Ac radio immunotherapy applications. Bioconjugate Chem 11:510–519CrossRefGoogle Scholar
  58. 58.
    Mokhodoeva O, Vlk M, Malkova E, Kukleva E, Micolova P, Stamberg K, Slouf M, Dzhenloda R, Kozempel J (2016) Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs. J Nanopart Res 18:301–3013.  https://doi.org/10.1007/s11051-016-3615-7 CrossRefGoogle Scholar
  59. 59.
    Yahaya YA, Don MM, Bhatia S (2009) Biosorption of copper(II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: equilibrium and kinetic studies. J Hazard Mater 161:189–195PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Suzuki T, Hatsushika T, Miyake M (1982) Synthetic hydroxyapatites as inorganic cation exchangers. Part 2 J Chem Soc Faraday Trans 1:3605–3611CrossRefGoogle Scholar
  61. 61.
    Borai EH, Attallah MF, Elgazzar AH, El-Tabl AS (2019) Isotherm and kinetic sorption of some lanthanides and iron from aqueous solution by aluminum silicotitante exchanger. Part Sci Technol 37(4):410–422.  https://doi.org/10.1080/02726351.2017.1385550 CrossRefGoogle Scholar
  62. 62.
    Rabiul AM, Kobayashi T, Miyazaki Y, Motokawa R, Shiwaku H, Suzuki S, Okamoto Y, Yaita T (2013) Selective lanthanide sorption and mechanism using novel hybrid Lewis base (N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified adsorbent. J Hazard Mater 252:313–320Google Scholar
  63. 63.
    Otun JA, Oke IA, Olarinoye NO, Adie DB, Okuofu CA (2006) Adsorption isotherms of Pb(II), Ni(II) and Cd(II) ions onto PES. J Appl Sci 6:2368–2376CrossRefGoogle Scholar
  64. 64.
    Rosskopfova O, Galambos M, Pivarciova L, Caplovicova M, Rajec P (2013) Adsorption of nickel on synthetic hydroxyapatite from aqueous solutions. J Radioanal Nucl Chem 295:459–465.  https://doi.org/10.1007/s10967-012-1799-6 CrossRefGoogle Scholar
  65. 65.
    Namasivayam C, Ranganathan K (1994) Recycling of “waste” Fe(III)/Cr(III) hydroxide for the removal of nickel from wastewater: adsorption and equilibrium studies. Waste Manag 14:709–716CrossRefGoogle Scholar
  66. 66.
    Ito T, Kim SY (2018) Adsorption and separation behaviors of molybdenum from high-level liquid waste using a silica-based hydroxyoxime impregnated adsorbent. J Radioanal Nucl Chem 316:1165–1172.  https://doi.org/10.1007/s10967-018-5838-9 CrossRefGoogle Scholar
  67. 67.
    Nayarados SE, Jose SS, Mitiko Y (2011) Sudy on removal of molybdenum from aqueous solution using sugarcane bagasse ash adsorbent. In: International Atlantic Conference on Nuclear, 24–28 October, BrazilGoogle Scholar
  68. 68.
    Arias M, Barral MT, Mejuto JC (2002) Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere 48:1081–1088PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Avena MJ, Koopal LK (1998) Desorption of humic acids from an iron oxide surface. Environ Sci Technol 32:2572–2577CrossRefGoogle Scholar
  70. 70.
    Cynthia AC, Raymond NY (2006) Humic acid preparation, properties and interactions with metals lead and cadmium. Eng Geol 85:26–32CrossRefGoogle Scholar
  71. 71.
    Bois L, Ribes A, Petit-Ramel M, Grenier-Loustalot MF (2003) Experimental study of chromium adsorption on minerals in the presence of phthalic and humic acids. Chem Ecol 19(4):263–273.  https://doi.org/10.1080/0275754031000154844 CrossRefGoogle Scholar
  72. 72.
    Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–46PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Grafe M, Eick MJ, Grossl PR, Saunders AM (2002) Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J Environ Qual 31:1115–1123PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Li X, Zeng H, Teng L, Chen H (2014) Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals. Mater Lett 125:78–81CrossRefGoogle Scholar
  75. 75.
    Zhao Z, Meng H, Wang N, Donovan MJ, Fu T, You M, Chen Z, Zhang X, Tan WA (2013) Controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed 52:7487–7491CrossRefGoogle Scholar
  76. 76.
    Sheng GD, Yang Q, Peng F, Li H, Gao X, Huang YY (2014) Chem Eng J 245:10–16CrossRefGoogle Scholar
  77. 77.
    Bryan ND, Abrahamsen L, Evans N, Warwick P, Buckau G, Weng L, van Riemsdijk WHV (2012) The effects of humic substances on the transport of radionuclides: recent improvements in the prediction of behavior and the understanding of mechanisms. Appl Geochem 27(2):378–389CrossRefGoogle Scholar
  78. 78.
    Buffle J (1977) Metal ions in biological systems. Dekker, New York, pp 165–221Google Scholar
  79. 79.
    Zeng H, Li X, Sun M, Wu S, Chen H (2017) Synthesis of europium-doped fluorapatite nanorods and their biomedical applications in drug delivery. Molecules 22:753–760.  https://doi.org/10.3390/molecules22050753 CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Alvarez-Puebla RA, Valenzuela-Calahorro C, Garrido JJ (2006) Theoretical study on fulvic acid structure, conformation and aggregation, a molecular modelling approach. Sci Total Environ 358:243–254PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Chemistry of Nuclear Fuel Department, Hot Laboratories CenterAtomic Energy Authority of EgyptCairoEgypt
  2. 2.Analytical Chemistry and Control Department, Hot Laboratories CenterAtomic Energy Authority of EgyptCairoEgypt

Personalised recommendations