Skip to main content
Log in

Amine-functionalized graphene oxide/zinc hexacyanoferrate composites for cesium removal from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Amine-functionalized graphene oxide/zinc hexacyanoferrate (amino-rGO/ZnHCF) composites were successfully synthesized for the removal of Cs+ from radioactive liquid waste. Their morphologies, surface areas, pore sizes, functional groups, and thermal stabilities were investigated by field-emission transmission electron microscopy, Brunauer–Emmett–Teller analysis, Fourier transform infrared spectroscopy, and thermogravimetry. Adsorption experiments revealed high adsorption capacities at pH 5–7 and stability below pH 9. The dependence of the synthesized composites on the pseudo-second-order model and the Temkin model was also observed. The results of this study indicate that the new amino-rGO/ZnHCF composites are good adsorbent candidates for Cs removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) PNAS 108:19530–19534

    CAS  PubMed  Google Scholar 

  2. Akahane K, Yonai S, Fukuda S, Miyahara N, Yasuda H, Iwaoka K, Matsumoto M, Fukumura A, Akashi M (2012) Environmentalist 32:136–143

    Google Scholar 

  3. Buesseler K, Aoyama M, Fukasawa M (2011) Environ Sci Technol 45:9931–9935

    CAS  PubMed  Google Scholar 

  4. Ding D, Zhao Y, Yang S, Shi W, Zhang Z, Lei Z, Yang Y (2013) Water Res 47:2563–2571

    CAS  PubMed  Google Scholar 

  5. Wakahara T, Onda Y, Kato H, Sakaguchi A, Yoshimura K (2014) Environ Sci 16:2580–2591

    CAS  Google Scholar 

  6. Mimura H, Kimura M, Akiba K, Onodera Y (1999) Sep Sci Technol 34:17–28

    CAS  Google Scholar 

  7. Woods MJ (1990) Nucl Instrum Methods Phys Res 286:576–583

    Google Scholar 

  8. Gostely JJ (1992) Part A Appl Radiat Isotopes 43:949–951

    CAS  Google Scholar 

  9. Shakir K, Sohsah M, Soliman M (2007) Sep Purif Technol 54:373–381

    CAS  Google Scholar 

  10. Awual M, Yaita T, Taguchi T, Shiwaku H, Suzuki S, Okamoto Y (2014) J Hazard Mater 278:227–235

    CAS  PubMed  Google Scholar 

  11. Karamanis D, Assimakopoulos PA (2007) Water Res 41:1897–1906

    CAS  PubMed  Google Scholar 

  12. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML (2014) Bioresour Technol 160:142–149

    CAS  PubMed  Google Scholar 

  13. Zhang A, Zhang W, Wang Y, Ding X (2016) Sep Purif Technol 171:17–25

    CAS  Google Scholar 

  14. Dwivedi C, Kumar A, Singh KK, Juby AK, Kumar M, Wattal PK, Bajaj PN (2013) J Appl Polym Sci 129:152–160

    CAS  Google Scholar 

  15. Yang S, Han C, Wang X, Nagatsu M (2014) J Hazard Mater 274:46–52

    CAS  PubMed  Google Scholar 

  16. Chang C, Chau L, Hu W, Wang C, Liao J (2008) Microporous Mesoporous Mater 109:505–512

    CAS  Google Scholar 

  17. Lin Y, Fryxell GE, Wu H, Engelhard M (2001) Environ Sci Technol 35:3962–3966

    CAS  PubMed  Google Scholar 

  18. El-Kamash AM (2008) J Hazard Mater 151(432):445

    Google Scholar 

  19. Durrani SK, Dyer A, Blackburn R (1993) Zeolites 13:1–13

    Google Scholar 

  20. Parajuli D, Kitajima A, Takahashi A, Tanaka H, Ogawa H, Hakuta Y, Yoshino K, Funahashi T, Yamaguchi M, Osada M, Kawamoto T (2016) J Environ Radioact 151:223–237

    Google Scholar 

  21. Deng J, Zhang X, Zeng G, Gong J, Niu Q, Liang J (2013) Chem Eng J 226:189–200

    CAS  Google Scholar 

  22. Fan L, Luo C, Sun M, Li X, Lu F, Qiu H (2012) Bioresour Technol 114:703–706

    CAS  PubMed  Google Scholar 

  23. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah S, Su X (2012) J Colloid Interface Sci 368:540546

    Google Scholar 

  24. Chandra V, Kim K (2011) Chem Commun 47:3942–3944

    CAS  Google Scholar 

  25. Nodeh HR, Ibrahim WAW, Ali I, Sanagi MM (2016) Environ Sci Pollut Res 23:9759–9773

    Google Scholar 

  26. Wang H, Yuan Z, Wu Y, Huang H, Zeng G, Liu Y, Wang W, Lin N, Qi Y (2013) Appl Surf Sci 279:432–440

    CAS  Google Scholar 

  27. Zhang K, Dwivedi V, Chi C, Wu J (2010) J Hazard Mater 192:162–168

    Google Scholar 

  28. Matsumoto Y, Koinuma M, Taniguchi T (2015) Carbon 87:462–463

    Google Scholar 

  29. Liu Y, Na P, Chen J, Xie Y (2018) Colloids Surf A 550:99–107

    CAS  Google Scholar 

  30. Barton GB, Hepworth JL, Maclanahan ED, Moore RL, Tuyl HV (1958) Ind Eng Chem 50:212–216

    CAS  Google Scholar 

  31. Valentini MTG, Meloni S, Maxia V (1972) J Inorg Nucl Chem 34:1427–1436

    Google Scholar 

  32. Clarke TD, Wai CM (1998) Anal Chem 70:3708–3711

    CAS  PubMed  Google Scholar 

  33. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    CAS  Google Scholar 

  34. Sheha RR (2012) J Colloid Interface Sci 388:21–30

    CAS  PubMed  Google Scholar 

  35. Lee HK, Lee HJ, Choi JW, Oh W, Choi SJ (2017) J Radional Nucl Chem 314:2357–2363

    CAS  Google Scholar 

  36. Gao DD, Liu X, Bian SJ, Li W, Wei M (2014) Adv Mater Res 912:40–43

    Google Scholar 

  37. Zhu X, Xu W, Tan G, Wang Y (2018) Chem Sel 3:5571–5580

    CAS  Google Scholar 

  38. Cao Y, Zhang H, Song F, Huang T, Ji J, Zhong Q, Chu W, Xu Q (2018) Materials 11:589

    PubMed Central  Google Scholar 

  39. Fu C, Zhao G, Zhang H, Li S (2013) Int J Electrochem Sci 8:6269–6280

    CAS  Google Scholar 

  40. Gui MM, Yap YX, Chai SP, Mohamed AR (2013) Int J Greenh Gas Con 14:65–73

    CAS  Google Scholar 

  41. Mavaee A, Salimi A (2015) RSC Adv 74:59874–59880

    Google Scholar 

  42. Monteserín C, Blanco M, Aranzabe E, Aranzabe A, Laza JM, Varga A, Vilas JL (2017) Polymers 9:449

    PubMed Central  Google Scholar 

  43. Roh H, Kim Y, Kim YK, Harbottle D, Lee JW (2019) RSC Adv 9:1106–1114

    CAS  Google Scholar 

  44. Lee HK, Yang DS, Oh W, Choi SJ (2016) J Nanosci Nanotechnol 49:6223–6230

    Google Scholar 

  45. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Chem Mater 21:3514–3520

    CAS  Google Scholar 

  46. Yan H, Yang H, Li A, Cheng R (2016) Chem Eng J 284:1397–1405

    CAS  Google Scholar 

  47. Yang H, Sun L, Zhai J, Li H, Zhao Y, Yu H (2014) J Mater Chem A 2:326–332

    CAS  Google Scholar 

  48. Milyutin VV, Mikheev SV, Gelis VM, Kozlitin EA (2009) Radiochemistry 51:298–300

    CAS  Google Scholar 

  49. Larsson M, Nosrati A, Kaur S, Wagner J, Baus U, Byden M (2018) Heliyon 4:e00520

    PubMed  PubMed Central  Google Scholar 

  50. Thanh DN, Novak P, Vejpravova J, Vu HN, Lederer J, Munshi T (2018) J Magn Magn Mater 456:451–460

    CAS  Google Scholar 

  51. Langmuir I (1916) J Am Chem Soc 28:2221–2295

    Google Scholar 

  52. Freundlich H (1906) J Phys Chem 57:51–85

    Google Scholar 

  53. Tempkin M, Pyzhev V (1940) Acta Phys Chim USSR 12:327–356

    Google Scholar 

  54. Lee HK, Choi JW, Oh W, Choi SJ (2016) J Radional Nucl Chem 309:477–484

    CAS  Google Scholar 

  55. Ding D, Lei Z, Yang Y, Feng C, Zhang Z (2014) J Hazard Mater 270:187–195

    CAS  PubMed  Google Scholar 

  56. Park Y, Kim C, Choi SJ (2015) J Radional Nucl Chem 303:199–208

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nuclear Energy Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2018M2B2B1065631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-June Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JW., Park, YJ., Lee, HK. et al. Amine-functionalized graphene oxide/zinc hexacyanoferrate composites for cesium removal from aqueous solutions. J Radioanal Nucl Chem 323, 785–793 (2020). https://doi.org/10.1007/s10967-019-07002-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-07002-w

Keywords

Navigation