Skip to main content
Log in

Measurement of natural radioactivity concentrations and chemical composition of coal and its post-combustion residues in KSA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The variable values of 226Ra, 228Ra and 40K were identified in coal and coal combustion residuals (CCR) samples to redistribute radionuclides using 228Ra/226Ra activity ratios in CCRs and compared to their values in the corresponding feed coal. NORM concentrations in CCRs were found to be 6–12 times higher than the original coal. The effective dose rates in the original coal were calculated and ranged from 14.9 ± 0.9 to 370.3 ± 22.2 μSv year−1, whereas in CCRs ranged from 257.5 ± 20.6 to 1797.5 ± 143.8 μSv year−1. The average concentration of 40K (120 Bq kg−1 per 1% K2O in CCRs) was calculated. The chemical composition indicates that the majority of CCR samples are Type C, which has a high calcium oxide ratio, high melting points and low deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Trevisi R, Risica S, D’Alessandro M, Paradiso D, Nuccetelli C (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact 105:11–20

    Article  CAS  Google Scholar 

  2. Tadmor J (1986) Radioactivity from coal-fired power plants: a review. J Environ Radioact 4(3):177–204

    Article  CAS  Google Scholar 

  3. Eisenbud M, Petrow HG (1964) Radioactivity in the atmospheric effluents of power plants that use fossil fuels. Science 144(3616):288–289

    Article  CAS  Google Scholar 

  4. Coles DG, Ragaini RC, Ondov JM (1978) Behavior of natural radionuclides in western coal-fired power plants. Environ Sci Technol 12(4):442–446

    Article  CAS  Google Scholar 

  5. Völgyesi P, Kis Z, Zs Szabó, Cs Szabó (2014) Using the 186-keV peak for 226Ra activity concentration determination in Hungarian coal-slag samples by gamma-ray spectroscopy. J Radioanal Nucl Chem Lett 302:375–383

    Article  Google Scholar 

  6. Beck HL, Gogolak C, Miller K, Lowder WM (1980) Perturbations on the natural radiation environment due to the utilization of coal as an energy source. U.S. Department of Energy, Washington

    Google Scholar 

  7. Zielinski RA, Budahn JR (1998) Radionuclides in fly ash and bottom ash: improved characterization based on radiography and low energy gamma-ray spectrometry. Fuel 77(4):259–267

    Article  CAS  Google Scholar 

  8. Fardy J, McOrist G, Farrar Y (1989) Neutron activation analysis and radioactivity measurements of Australian coals and fly ashes. J Radioanal Nucl Chem Lett 133(2):217–226

    Article  CAS  Google Scholar 

  9. Bem H, Wieczorkowski P, Budzanowski M (2002) Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the lodz region of Poland. J Environ Radioact 61(2):191–201

    Article  CAS  Google Scholar 

  10. Sanjuán MA, Argiz C (2012) The new European standard on common cements specifications EN 197-1:2011. Mater Constr 62:425–430

    Article  Google Scholar 

  11. Argiz C, Menéndez E, Moragues A, Sanjuan MA (2015) Fly ash characteristics of Spanish coal-fired power plants. Afinidad 572:269–277

    Google Scholar 

  12. Council Directive 2013/59/Euratom of 5 Dec. (2013) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing directives 89/618/Euratom. 90/641/Euratom. 96/29/Euratom. 97/43/Euratom and 2003/122/Euratom. L13, vol 57. ISSN: 1977-0677

  13. Schroeyers W, Puertas F, Alonso M, Torres Carrasco M, Rivilla P, Gasco C, Trinidad JA, Suarez JA, Navarro N, Yague L, Mora JC, Orellana JG, Masque P, Hierro A, Bolıvar JP, Vazquez M, Quintana B (2015) In: Verdu´ G (ed) Introduction of the COST Action: COST TU1301 ‘‘NORM4-building’’. 48 Joint Congress 20 SEFM/15 SEPR (Spanish Society for Radiological Protection. Ed.) Valencia. Spain

  14. Puertas F, García-Díaz I, Palacios M, Gazulla MF, Gómez MP, Orduña M (2010) Clinkers and cements obtained from raw mix containing ceramic waste as a prime material. Characterization, hydration and leaching studies. Cem Concr Compos 32:175–186

    Article  CAS  Google Scholar 

  15. Sanjuan MA, Quintana B, Argiz C (2019) Coal bottom ash natural radioactivity in building materials. J Radioanal Nucl Chem Lett 319:91–99

    Article  CAS  Google Scholar 

  16. García R, Pizarro C, Álvarez A, Lavín AG, Bueno JL (2015) Study of biomass combustion wastes. Fuel 148:152–159

    Article  Google Scholar 

  17. Carlson CL, Adriano DC (1993) Environmental impacts of coal combustion residues. J Environ Qual 22:227–247

    Article  CAS  Google Scholar 

  18. Ural S (2005) Comparison of fly ash properties from Afsin-Elbistan coal basin, Turkey. J Hazard Mater B119:85–92

    Article  Google Scholar 

  19. Bundesanstalt für Geowissenschaften und Rohstoffe – Federal Institute for Geosciences and Natural Resources (BGR) (2009) Reserves, resources and availability of energy resources—annual report 2009, BGR, Hannover, Germany. www.bgr.bund.de

  20. Puertas F, Alonso MM, Torres-Carrasco M, Rivilla P, Gasco C, Yagüe L, Suárez JA, Navarro N (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Constr Build Mater 101:1105–1112

    Article  Google Scholar 

  21. Lauer NC, Hower JC, Hsu-Kim H, Taggart RK, Vengosh A (2015) Naturally occurring radioactive materials in coals and coal combustion residuals in the United States. Environ Sci Technol 49(18):11227

    Article  CAS  Google Scholar 

  22. Pandit GG, Sahu SK, Puranik VD (2011) Natural radionuclides from coal fired thermal power plants—estimation of atmospheric release and inhalation risk. Radioprotection 46(6):S173–S179

    Article  Google Scholar 

  23. Swanson VE (1976) Collection, chemical analysis, and evaluation of coal samples in 1975. U.S. Department of the Interior, Geological Survey, Washington

    Book  Google Scholar 

  24. Allam KhA, Ahmed Z, El-Sharkawy S, Salman A (2017) Analysis and statistical treatment of 238U series isotopic ratios using gamma-ray spectrometry in phosphate samples Radiat. Prot Environ 40(3&4):110

    Article  Google Scholar 

  25. European Commission (1999) Radiation protection 122-radiological protection principles concerning the natural radioactivity of building materials. Directorate General Environment. Nuclear Safety and Civil Protection. https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf. Accessed 27 Jul 2018

  26. Markkanen M (1995) Radiation dose assessments for materials with elevated natural radioactivity. Report STUK-B-STO 32. Radiation and Nuclear Safety Authority-STUK. Helsinki. Iceland

  27. Stojanovska Z, Nedelkovski D, Ristova M (2010) Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials. Radiat Meas 45:969–972

    Article  CAS  Google Scholar 

  28. UNSCEAR (1998) Sources, effects and risk of ionizing radiation. United Nations, New York

    Google Scholar 

  29. UNSCEAR (1993) Exposure from natural sources of radiation. United Nations, New York

    Google Scholar 

  30. Yang Y (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259

    Article  CAS  Google Scholar 

  31. Mohanty AK, Sengupta D, Das SK, Saha SK (2004) Natural radioactivity and radiation exposure in the high background area at Chatrapur beach placer deposit of Orissa, India. J Environ Radioact 75:15–33

    Article  CAS  Google Scholar 

  32. Xiao R, Chen X, Wang F, Yu G (2011) The physicochemical properties of different biomass ashes at different ashing temperature. Renew Energy 36:244–249

    Article  CAS  Google Scholar 

  33. Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgewater AV et al (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86:60–72

    Article  CAS  Google Scholar 

  34. Fryda L, Sobrino C, Glazer M, Bertrand C, Cieplik M (2012) Study of ash deposition during coal combustion under oxyfuel conditions. Fuel 92:308

    Article  CAS  Google Scholar 

  35. Vamvuka D, Pitharoulis M, Alevizos G, Repouskou E, Pentari D (2009) Effects during combustion of lignite/biomass blends in fluidized bed. Renew Energy 34:2662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Deanship of Scientific Research, Princess Nourah bent Adulrahman University through the Fast-track Research Funding Program. The authors would also like to thank editor-in-chief of Journal of Radioanalytical and Nuclear Chemistry and referees for their valuable comments and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. El-Azony.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloraini, D.A., El-Azony, K.M. Measurement of natural radioactivity concentrations and chemical composition of coal and its post-combustion residues in KSA. J Radioanal Nucl Chem 323, 885–895 (2020). https://doi.org/10.1007/s10967-019-07001-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-07001-x

Keywords

Navigation