Skip to main content
Log in

Prediction of activity and osmotic coefficients of fission product systems CsOH + CsX (X = Cl, Br, I) at 298.15 K

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The activity and osmotic coefficients of fission product systems CsOH + CsCl, CsOH + CsBr and CsOH + CsI are of importance for studying the removal of cesium ions from radioactive wastewater and the hygroscopic growth of its aerosols. Various mixtures of alkali metal hydroxides and their halides are selected as the verification systems. Results indicate that the prediction effects of electrolyte MIVM (eMIVM) are better than that of Pitzer’s equation. Then, the activity coefficient, osmotic coefficient and excess Gibbs energy of the above mentioned systems are further predicted by both models. It is found that the predicted values of eMIVM are more reliable and reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang JL, Zhuang ST (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Bio-Technol 18:231–269

    Article  CAS  Google Scholar 

  2. Park Y, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  3. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011) Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chem Eng J 172:572–580

    Article  CAS  Google Scholar 

  4. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review. J Hazard Mater 344:511–530

    Article  CAS  Google Scholar 

  5. Zhang XY, Gu P, Liu Y (2019) Decontamination of radioactive wastewater: state of the art and challenges forward. Chemosphere 215:543–553

    Article  CAS  Google Scholar 

  6. Mishra G, Mandariya AK, Tripathi SN, Mariam Joshi M, Khan A, Sapra BK (2019) Hygroscopic growth of CsI and CsOH particles in context of nuclear reactor accident research. J Aerosol Sci 132:60–69

    Article  CAS  Google Scholar 

  7. Harned HS, Schupp OE Jr (1930) The activity coefficient and dissociation of water in cesium chloride solutions. J Am Chem Soc 52:3892–3900

    Article  CAS  Google Scholar 

  8. Pitzer KS (1973) Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys Chem 77:268–277

    Article  CAS  Google Scholar 

  9. Pitzer KS, Kim JJ (1974) Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J Am Chem Soc 96:5701–5707

    Article  CAS  Google Scholar 

  10. Kunz W (2009) Specific ion effects. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  11. Tao DP (2000) A new model of thermodynamics of liquid mixtures and its application to liquid alloys. Thermochim Acta 363:105–113

    Article  CAS  Google Scholar 

  12. Chen CC, Britt HI, Boston JF, Evans LB (1982) Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems. AIChE J 28:588–596

    Article  CAS  Google Scholar 

  13. Chen CC, Evans LB (1986) A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J 32:444–454

    Article  CAS  Google Scholar 

  14. Pitzer KS (1980) Electrolytes. From dilute solutions to fused salts. J Am Chem Soc 102:2902–2906

    Article  CAS  Google Scholar 

  15. Haghtalab A, Peyvandi K (2009) Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib 281:163–171

    Article  CAS  Google Scholar 

  16. Robinson RA, Stokes RH (2002) Electrolyte solutions, 2nd edn. Dover Publications, New York

    Google Scholar 

  17. Rard JA, Miller DG (1982) Isopiestic determination of the osmotic and activity coefficients of aqueous cesium chloride, strontium chloride, and mixtures of sodium chloride and cesium chloride at 25°C. J Chem Eng Data 27:169–173

    Article  CAS  Google Scholar 

  18. Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308

    Article  CAS  Google Scholar 

  19. Falciola L, Mussini PR, Mussini T, Pozzi S, Rondinini S (2003) A thermodynamic study of the aqueous (sodium chloride + sodium hydroxide) electrolyte using sodium amalgam and thallous chloride electrode cells. J Chem Thermodyn 35:405–416

    Article  CAS  Google Scholar 

  20. Königsberger E, Königsberger LC, Hefter G, May PM (2007) Zdanovskii’s rule and isopiestic measurements applied to synthetic Bayer liquors. J Solut Chem 36:1619–1634

    Article  Google Scholar 

  21. Harned HS, Swindells FE (1926) The activity coefficient of lithium hydroxide in water and in aqueous lithium chloride solutions, and the dissociation of water in lithium chloride solutions. J Am Chem Soc 48:126–135

    Article  CAS  Google Scholar 

  22. Harned HS, Cook MA (1937) The activity and osmotic coefficients of some hydroxide—chloride mixtures in aqueous solution. J Am Chem Soc 59:1890–1893

    Article  CAS  Google Scholar 

  23. Harned HS (1925) The activity coefficient of sodium hydroxide in sodium chloride solutions. J Am Chem Soc 47:684–689

    Article  CAS  Google Scholar 

  24. Harned HS, Harris JM Jr (1928) The activity coefficients of sodium and potassium hydroxides in their corresponding chloride solutions at high constant total molality. J Am Chem Soc 50(10):2633–2637

    Article  CAS  Google Scholar 

  25. Harned HS, James GM (1926) The dissociation of water in potassium and sodium bromide solutions. J Phys Chem 30:1060–1072

    Article  CAS  Google Scholar 

  26. Rowland D, May PM (2016) An investigation of Harned’s rule for predicting the activity coefficients of strong aqueous electrolyte solution mixtures at 25°C. J Chem Eng Data 62:310–327

    Article  Google Scholar 

  27. Kim HT, Frederick WJ Jr (1988) Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25°C. 2. Ternary mixing parameters. J Chem Eng Data 33:278–283

    Article  CAS  Google Scholar 

  28. Lach A, André L, Lassin A, Azaroual M, Serin JP, Cezac P (2015) A new Pitzer parameterization for the binary NaOH–H2O and ternary NaOH–NaCl–H2O and NaOH–LiOH–H2O systems up to NaOH solid salt saturation, from 273.15 to 523.15 K and at saturated vapor pressure. J Solut Chem 44:1424–1451

    Article  CAS  Google Scholar 

  29. Huang XT, Li SN, Zhai Q, Jiang YC, Hu MC (2016) Thermodynamic studies of (RbF + RbCl + H2O) and (CsF + CsCl + H2O) ternary systems from potentiometric measurements at T = 298.2 K. J Chem Thermodyn 103:157–164

    Article  CAS  Google Scholar 

  30. Dou ZD, Li SN, Zhai QG, Jiang YC, Hu MC (2018) Potentiometric investigation of the thermodynamic properties of mixed electrolyte systems at 298.2 K: CsF + CsBr + H2O and CsF + CsNO3 + H2O. J Chem Eng Data 63:3801–3808

    Article  CAS  Google Scholar 

  31. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. —Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  32. Lee LL (2008) Molecular thermodynamics of electrolyte solutions. World Scientific, Singapore

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. 51464022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xing, Y. & Tao, D. Prediction of activity and osmotic coefficients of fission product systems CsOH + CsX (X = Cl, Br, I) at 298.15 K. J Radioanal Nucl Chem 323, 773–784 (2020). https://doi.org/10.1007/s10967-019-06989-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06989-6

Keywords

Navigation