Skip to main content
Log in

Radiological, structural and chemical characterization of raw materials and ceramic tiles in Serbia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the results of the gamma spectrometric analysis of 27 raw materials used for the production of ceramic tiles in Serbia and 9 samples of ceramic tiles produced in the Serbian ceramic industry Zorka Keramika. Radiological hazard indices and annual effective doses for professional exposure in working with raw materials in ceramic industry and for humans exposure from the use of ceramic tiles in buildings were assessed. For ceramic tile samples, structural and chemical characterization was performed using X-ray diffraction and X-ray fluorescence methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbasi A (2013) Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat Prot Dosim 155:335–342. https://doi.org/10.1093/rpd/nct003

    Article  CAS  Google Scholar 

  2. Joshua EO, Ademola JA, Akpanowo MA, Oyebanjo OA, Olorode DO (2009) Natural radionuclides and hazards of rock samples collected from Southeastern Nigeria. Radiat Meas 44:401–404. https://doi.org/10.1016/j.radmeas.2009.04.002

    Article  CAS  Google Scholar 

  3. Viruthagiri G, Rajamannan B, Suresh Jawahar K (2013) Radioactivity and associated radiation hazards in ceramic raw materials and end products. Radiat Prot Dosim. 157:383–391. https://doi.org/10.1093/rpd/nct149

    Article  CAS  Google Scholar 

  4. Alali AE, Al-Shboul KF, Albdour SA (2018) Radioactivity measurement and radiological hazard assessment of the commonly used granite and marble in Jordan. Radiat Prot Dosim. https://doi.org/10.1093/rpd/ncy077

    Article  Google Scholar 

  5. Gupta M, Chauhan RP (2011) Estimating radiation dose from building materials, Iran. J Radiat Res 9:187–194

    Google Scholar 

  6. UNSCEAR (1993) Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  7. El-Arabi AM (2007) 226Ra, 232Th and 40K concentrations in igneous rocks from eastern desert, Egypt and its radiological implications. Radiat Meas 42:94–100. https://doi.org/10.1016/j.radmeas.2006.06.008

    Article  CAS  Google Scholar 

  8. Kayakökü H, Karatepe Ş, Doğru M (2016) Measurements of radioactivity and dose assessments in some building materials in Bitlis, Turkey. Appl Radiat Isot 115:172–179. https://doi.org/10.1016/j.apradiso.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  9. Ngachin M, Garavaglia M, Giovani C, Kwato Njock MG, Nourreddine A (2007) Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radiat Meas 42:61–67. https://doi.org/10.1016/j.radmeas.2006.07.007

    Article  CAS  Google Scholar 

  10. Turhan S, Arıkan IH, Demirel H, Gungor N (2011) Radiometric analysis of raw materials and end products in the Turkish ceramics industry. Radiat Phys Chem 80:620–625. https://doi.org/10.1016/j.radphyschem.2011.01.007

    Article  CAS  Google Scholar 

  11. Markkanen M (1995) Radiation dose assessments for materials with elevated natural radioactivity. Finnish Centre for Radiation and Nuclear Safety STUK-B-STO 32, Helsinki

    Google Scholar 

  12. Luo Y, Zheng S, Ma S, Liu C, Wang X (2017) Ceramic tiles derived from coal fly ash: preparation and mechanical characterization. Ceram Int 43:11953–11966. https://doi.org/10.1016/j.ceramint.2017.06.045

    Article  CAS  Google Scholar 

  13. Yacine A, Ratiba MK, Abderrahmane G (2016) Ceramic waste influence on dune sand mortar performance. Constr Build Mater 125:703–713. https://doi.org/10.1016/j.conbuildmat.2016.08.083

    Article  CAS  Google Scholar 

  14. Official Gazette RS 36/18 (2018) Regulation on limits of radionuclide content in drinking water, foodstuffs, feeding stuffs, drugs, items of general use, building materials and other goods to be placed on the market (in Serbian)

  15. Official Gazette RS 86/2011 and 50/2018 (2018) Rulebook on limits of exposure to ionizing radiation and measurements for assessment of the exposure levels (in Serbian)

  16. Council Directive 2013/59/Euratom of 5 Dec. 2013 (2014) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. L13, vol 57. ISSN 1977-0677. https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf

  17. Todorović N, Bikit I, Krmar M, Mrdja D, Hansman J, Nikolov J, Forkapić S, Vesković M, Bikit K, Jakonić I (2014) Natural radioactivity in raw materials used in building industry in Serbia. Int J Environ Sci Technol 12:705–716. https://doi.org/10.1007/s13762-013-0470-2

    Article  CAS  Google Scholar 

  18. Walley El-Dine N, Sroor A, El-Shershaby A, El-Bahi SM, Ahmed F (2004) Radioactivity in local and imported kaolin types used in Egypt. Appl Radiat Isot 60:105–109. https://doi.org/10.1016/j.apradiso.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  19. Walley El-Dine N, El-Shershaby A, Afifi S, Sroor A, Samir E (2011) Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt. Appl Radiat Isot. 69:803–807. https://doi.org/10.1016/j.apradiso.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  20. Silva AC, Carolina SD, Sousa DN, Silva EMS (2019) Feldspar production from dimension stone tailings for application in the ceramic industry. J Mater Res Technol 8:1–7. https://doi.org/10.1016/j.jmrt.2018.02.011

    Article  CAS  Google Scholar 

  21. Beddiaf S, Chihi S, Leghrieb Y (2015) The determination of some crystallographic parameters of quartz, in the sand dunes of Ouargla, Algeria. J Afr Earth Sci 106:129–133. https://doi.org/10.1016/j.jafrearsci.2015.03.014

    Article  CAS  Google Scholar 

  22. Todorović N, Bikit I, Krmar M, Mrđa D, Hansman J, Nikolov J, Todorović S, Forkapić S, Jovančević N, Bikit K, Janković Mandić L (2016) Assessment of radiological significance of building materials and residues. Rom J Phys 62:817

    Google Scholar 

  23. Attallah MF, Hilal MA, Moussa SI (2017) Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl Radiat Isot 128:224–230. https://doi.org/10.1016/j.apradiso.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  24. El Nouhy HA (2013) Assessment of some locally produced Egyptian ceramic wall tiles. HBRC J 9:201–209. https://doi.org/10.1016/j.hbrcj.2013.08.001

    Article  Google Scholar 

  25. Kuzmanović P, Todorović N, Nikolov J, Hansman J, Vraničar A, Knežević J, Miljević B (2019) Assessment of radiation risk and radon exhalation rate for granite used in the construction industry. J Radioanal Nucl Chem 321:565–577. https://doi.org/10.1007/s10967-019-06592-9

    Article  CAS  Google Scholar 

  26. Moens L, De Donder J, Xi-lei Lin, De Corte F, De Wispelaere A, Simonitis A, Hoste J (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instrum Methods 187:451–472

    Article  CAS  Google Scholar 

  27. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial waste sand by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  28. Joel ES, Maxwell O, Adewoyin OO, Ehi-Eromosele CO, Embongc Z, Saeed MA (2018) Assessment of natural radionuclides and its radiological hazards from tiles made in Nigeria. Radiat Phys Chem 144:43–47. https://doi.org/10.1016/j.radphyschem.2017.11.003

    Article  CAS  Google Scholar 

  29. NEA-OECD (Organization for Economic Co-operation and Development) (1979) Exposure to radiation from radioactivity in building materials. Report by a Group of Experts of the OECD Nuclear Energy Agency, Paris

  30. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on Effects of Atomic Radiation. Exposures from Natural Radiation Sources, Annex B. United Nations Publication, New York, USA

  31. EC (European Commission) (1999) Radiation protection 112, Radiological protection principles concerning the natural radioactivity of building materials. Directorate—General Environment, Nuclear Safetyand Civil Protection, Luxembourg, EC

  32. WHO (2009) WHO handbook on indoor radon: a public health perspective. In: Zeeb H, Shannoun F (eds) World Health Organization. WHO Library Cataloguing-in-Publication Data, World Health Organization, Geneva ISBN 978 92 4 154767 3

  33. Lu X, Chao S, Yang F (2014) Determination of natural radioactivity and associated radiation hazard in building materials used in Weinan, China. Radiat Phys Chem. 99:62–67. https://doi.org/10.1016/j.radphyschem.2014.02.021

    Article  CAS  Google Scholar 

  34. Krstić D, Nikezić D, Stevanović N, Vučić D (2007) Radioactivity of some domestic and imported building materials from South Eastern Europe. Radiat Meas 42:1731–1736. https://doi.org/10.1016/j.radmeas.2007.09.001

    Article  CAS  Google Scholar 

  35. UNSCEAR (2008) Sources and effects of ionizing radiation. Report to the General Assembly with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, Annex A and B, United Nations, New York, USA

  36. Turhan S (2009) Radiological impacts of the usability of clay and kaolin as raw material in manufacturing of structural building materials in Turkey. J Radiol Prot 29:75–83. https://doi.org/10.1088/0952-4746/29/1/005

    Article  CAS  PubMed  Google Scholar 

  37. Todorović N, Bikit I, Vesković M, Krmar M, Mrđa D, Forkapić S, Hansman J, Nikolov J, Bikit K (2014) Radioactivity in the indoor building environment in Serbia. Radiat Prot Dosim 158:208–215. https://doi.org/10.1093/rpd/nct210

    Article  CAS  Google Scholar 

  38. Agaguunodo TA, George AL, Ojoawo IA, Ojesanmi K, Ravisnkar R (2018) Radioactivity and radiological hazards from a kaolin mining field in Ifonyintedo, Nigeria. MethodsX 5:362–374. https://doi.org/10.1016/j.mex.2018.04.009

    Article  Google Scholar 

  39. Pantelić G, Todorović D, Nikolić J, Rajačić M, Janković M, Sarap N (2014) Measurement of radioactivity in building materials in Serbia. J Radioanal Nucl Chem 303:2517–2522. https://doi.org/10.1007/s10967-014-3745-2

    Article  CAS  Google Scholar 

  40. Janković MM, Rajačić MM, Rakić TM, Todorović DJ (2013) Natural radioactivity in imported ceramic tiles used in Serbia. Process Appl Ceram 7:123–127. https://doi.org/10.2298/PAC1303123J

    Article  CAS  Google Scholar 

  41. Manić VM, Manić GJ, Nikezić DR, Krstić DŽ (2015) The dose from radioactivity of covering construction materials in Serbia. Nucl Technol Radiat 30:287–293. https://doi.org/10.2298/NTRP1504287M

    Article  Google Scholar 

  42. Pilakouta M, Kallithrakas-Kontos N, Nikolaou G (2017) Determining the 40K radioactivity in rocks using x-ray spectrometry. Eur J Phys. https://doi.org/10.1088/1361-6404/aa78ba

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of Serbia, within the projects Nuclear Methods Investigations of Rare Processes and Cosmic No. 171002, Biosensing Technologies and Global System for Continues Research and Integrated Management No. 43002 and Development and Application of Multifunctional Materials Using Domestic Raw Materials in Upgraded Processing Lines No. III45008. Authors thank the ceramic tiles factory Zorka Keramika from Sabac, Serbia, on assembled ceramic tile samples for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Todorović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, P., Todorović, N., Nikolov, J. et al. Radiological, structural and chemical characterization of raw materials and ceramic tiles in Serbia. J Radioanal Nucl Chem 323, 861–874 (2020). https://doi.org/10.1007/s10967-019-06987-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06987-8

Keywords

Navigation