Skip to main content
Log in

Measurement of the 232Th(n, γ)/58Ni(n, p) reaction rate ratio in the leakage neutron field of a fast burst reactor

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The γ-ray activities of the activation products from 232Th(n, γ) and 58Ni(n, p) reactions were measured to obtain the reaction rates. The measurement was performed after irradiating a ThO2 tablet and a nickel foil in the leakage neutron field of the Chinese fast burst reactor II. The normalized reaction rates were calculated on the basis of the ENDF/B-VII.1, CENDL-3.1, JENDL-4.0, and BROND-2.2 databases. The experimental 232Th(n, γ)/58Ni(n, p) reaction rate ratio was found to be 4.37 with an uncertainty of 3.8%, consistent with each ratio calculated based on the ENDF/B-VII.1, JENDL-4.0, and BROND-2.2 databases, but was 11.2% larger than the ratio calculated based on the CENDL-3.1 database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xu H (2010) Study on Th-U nuclear fuel cycle. http://www.docin.com/p-254160829.html. Accessed 30 Oct 2016

  2. Prajapati PM, Naik H, Suryanarayana SV, Mukherjee S, Jagadeesan KC, Sharma SC, Thakre SV, Rasheed KK, Ganesan S, Goswami A (2012) Measurement of the neutron capture cross-sections of 232Th at 5.9 MeV and 15.5 MeV. Eur Phys J A 48:1–7. https://doi.org/10.1140/epja/i2012-12035-4

    Article  Google Scholar 

  3. Naik H, Surayanarayana SV, Bishnoi S, Patel T, Sinha A, Goswami A (2015) Neutron induced reaction cross-section of 232Th and 238U at the neutron energies of 2.45 and 14.8 MeV. J Radioanal Nucl Chem 303:2497–2504. https://doi.org/10.1007/s10967-014-3812-8

    Article  CAS  Google Scholar 

  4. Naik H, Prajapati PM, Surayanarayana SV, Jagadeesan KC, Thakare SV, Raj D, Mulik VK, Sivashankar BS, Nayak BK, Sharma SC, Mukherjee S, Sarbjit Singh, Goswami A, Ganesan S, Manchanda VK (2011) Measurement of the neutron capture cross-section of 232Th using the neutron activation technique. Eur Phys J A 47:51. https://doi.org/10.1140/epja/i2011-11051-2

    Article  CAS  Google Scholar 

  5. Mukherjee S, Vansola V, Parashari S, Makwana R, Singh NL, Suryanarayana SV, Sharma SC, Nayak BK, Naik H (2019) Measurement of 232Th and 238U neutron capture cross-sections in the energy range 5 to 17 MeV. Appl Radiat Isot 143:72–78. https://doi.org/10.1016/j.apradiso.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  6. Mukerji S, Naik H, Suryanarayana SV, Chachara S, Shivashankar BS, Mulik V, Crasta R, Samanta S, Nayak BK, Saxena A, Sharma SC, Bhagwat PV, Rasheed KK, Jindal RN, Ganesan S, Mohanty AK, Goswami A, Krishnani PD (2012) Measurement of 232Th(n, γ) and 232Th(n, 2n) cross-sections at neutron energies of 13.5, 15.5 and 17.28 MeV using neutron activation techniques. Pramana J Phys 79:249–262. https://doi.org/10.1007/s12043-012-0299-0

    Article  CAS  Google Scholar 

  7. Crasta R, Naik H, Suryanarayana SV, Shivashankar BS, Mulik VK, Prajapati PM, Sanjeev G, Sharma SC, Bhagwat PV, Mohanty AK, Ganesan S, Goswami A (2012) Measurement of the 232Th(n, γ)233Th and 232Th(n, 2n)231Th reaction cross-sections at neutron energies of 8.04 ± 0.30 and 11.90 ± 0.35 MeV. Ann Nucl Energy 47:160–165. https://doi.org/10.1016/j.anucene.2012.02.010

    Article  CAS  Google Scholar 

  8. Bhike M, Roy BJ, Saxena A, Choudhury RK, Ganesan S (2012) Measurement of 232Th(n, γ)233Th, 98Mo(n, γ)99Mo, 186W(n, γ)187W, 115In(n, γ)116mIn, and 92Mo(n, p)92m Nb cross sections in the energy range of 1.6 to 3.7 MeV. Nucl Sci Eng 170:44–53. https://doi.org/10.13182/NSE10-63

    Article  CAS  Google Scholar 

  9. Noy RC (2011) Review benchmarking of nuclear data for the Th/U fuel cycle. IAEA, Vienna

    Google Scholar 

  10. Pacan A, Słowiński B, Szuta M, Wojciechowski A (2013) A thorium loaded external neutron source driven setup as a multipurpose tool for nuclear power. Ann Nucl Energy 62:109–116. https://doi.org/10.1016/j.anucene.2013.05.033

    Article  CAS  Google Scholar 

  11. Zheng L, Yang Y, Liu Z, Liu R, Jiang L, Wang M (2016) Measurement and analysis of thorium fission rate in a polyethylene shell with a D-T neutron source. Fusion Eng Des 113:177–182. https://doi.org/10.1016/j.fusengdes.2016.09.013

    Article  CAS  Google Scholar 

  12. Wang Q, Zeng L, Ai Z, Song L, Xie Q, Zheng C, Gong J (2014) Measurement of the generation ratio of 233U and the average radiation capture cross-section of 232Th with 232ThO2 irradiated by fast neutrons. Nucl Tech 37:030602. https://doi.org/10.11889/j.0253-3219.2014.hjs.37.030602

    Article  CAS  Google Scholar 

  13. Verma VK, Katovsky K (2019) Major experimental facilities for development of accelerator-driven subcritical system. In: Verma VK, Katovsky K (eds) Spent nuclear fuel and accelerator-driven, green energy and technology. Springer Nature Singapore Pte Ltd., Singapore, pp 81–121

    Google Scholar 

  14. Pyeon CH, Lim JY, Takemoto Y, Yagi T, Azuma T, Kim H, Takahashi Y, Misawa T, Shiroya S (2011) Preliminary study on the thorium-loaded accelerator-driven system with 100 MeV protons at the Kyoto University Critical Assembly. Ann Nucl Energy 38:2298–2302. https://doi.org/10.1016/j.anucene.2011.06.024

    Article  CAS  Google Scholar 

  15. Pyeon CH, Yagi T, Sukawa K, Yamaguchi Y, Misawa T (2014) Mockup experiments on the thorium-loaded accelerator-driven system at the Kyoto University Critical Assembly. Nucl Sci Eng 177:156–168. https://doi.org/10.13182/NSE13-21

    Article  CAS  Google Scholar 

  16. Yamanaka M, Pyeon CH, Yagi T, Misawa T (2016) Accuracy of reactor physics parameters in thorium-loaded accelerator-driven system experiments at Kyoto University Critical Assembly. Nucl Sci Eng 183:96–106. https://doi.org/10.13182/NSE15-51

    Article  Google Scholar 

  17. Pyeon CH, Yamanaka M, Kim SH, Vu TM, Endo T, Van Rooijen WFG, Chiba G (2017) Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly. Nucl Eng Technol 49:1234–1239. https://doi.org/10.1016/j.net.2017.06.012

    Article  CAS  Google Scholar 

  18. Adam J, Katovsky K, Majerle M, Krivopustov MI, Kumar V, Bhatia C, Sharma M, Solnyshkin AA, Tsoupko-Sitnikov VM (2010) A study of nuclear transmutation of Th and natU with neutrons produced in a Pb target and U blanket irradiated by 1.6 GeV deuterons. Eur Phys J A 43:159–173. https://doi.org/10.1140/epja/i2010-10909-y

    Article  CAS  Google Scholar 

  19. Adam J, Bhatia C, Katovsky K, Kumar V, Majerle M, Pronskikh VS, Khilmanovich AM, Martsynkevich BA, Zhuk IV, Golovatiouk VM, Westmeier W, Solnyshkin AA, Tsoupko-Sitnikov VM, Potapenko AS (2011) A study of reaction rates of (n, f), (n, γ) and (n, 2n) reactions in natU and 232Th by the neutron fluence produced in the graphite set-up (GAMMA-3) irradiated by 2.33 GeV deuteron beam. Eur Phys J A 47:85. https://doi.org/10.1140/epja/i2011-11085-4

    Article  CAS  Google Scholar 

  20. Adam J, Chilap VV, Furman VI, Kadykov MG, Khushvaktov J, Pronskikh VS, Solnyshkin AA, Stegailov VI, Suchopar M, Tsoupko-Sitnikov VM, Tyutyunnikov SI, Vrzalova J, Wagner V, Zavorka L (2016) Study of secondary neutron interactions with 232Th, 129I, and 127I nuclei with the uranium assembly “QUINTA” at 2, 4, and 8 GeV deuteron beams of the JINR Nuclotron accelerator. Appl Radiat Isot 107:225–233. https://doi.org/10.1016/j.apradiso.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  21. Khushvaktov J, Adam J, Baldin AA, Chilap VV, Furman VI, Sagimbaeva F, Solnyshkin AA, Stegailov VI, Tichy P, Tsoupko-Sitnikov VM, Tyutyunnikov SI, Vespalec R, Vrzalova J, Yuldashev BS, Wagner V, Zavorka L, Zeman M (2016) Interactions of secondary particles with thorium samples in the setup QUINTA irradiated with 6 GeV deuterons. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 381:84–89. https://doi.org/10.1016/j.nimb.2016.05.032

    Article  CAS  Google Scholar 

  22. Asquith NL, Hashemi-Nezhad SR, Westmeier W, Zhuk I, Tyutyunnikov S, Adam J (2015) Study of 232Th(n, γ) and 232Th(n, f) reaction rates in a graphite moderated spallation neutron field produced by 1.6 GeV deuterons on lead target. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 344:51–58. https://doi.org/10.1016/j.nimb.2014.12.004

    Article  CAS  Google Scholar 

  23. Yang YW, Liu R, Yan XS (2013) Thorium capture ratio determination through γ-ray off-line method. Wuli Xuebao/Acta Phys Sin 62:032801. https://doi.org/10.7498/aps.62.032801

    Article  CAS  Google Scholar 

  24. Liu R, Yang YW, Yan XS, Feng S, Lu XX, Zhu TH, Jiang L, Wang M (2016) Measurement and calculation of U and Th reaction rates in uranium mock assemblies. Ann Nucl Energy 92:391–396. https://doi.org/10.1016/j.anucene.2016.01.048

    Article  CAS  Google Scholar 

  25. Zheng L, Yang Y, Liu Z, Liu R, Jiang L, Wang M, Wen J (2017) Measurement of 232Th(n, f) and 232Th(n, γ) reaction rates in thorium powder cylinder bombarded with D-T neutrons. J Nucl Sci Technol 54:600–608. https://doi.org/10.1080/00223131.2017.1291373

    Article  CAS  Google Scholar 

  26. Liu R, Yang Y, Zheng L, Liu Z, Feng S, Lu X, Jiang L, Wang M, Wen J (2018) Benchmark experiments on breeding properties of thorium. Fusion Eng Des 131:119–124. https://doi.org/10.1016/j.fusengdes.2018.04.079

    Article  CAS  Google Scholar 

  27. Feng S, Liu R, Lu XX, Yang YW, Wang M, Jiang L, Qin JG (2014) Determination of thorium fission rate by off-line method. Wuli Xuebao/Acta Phys Sin 63:162501. https://doi.org/10.7498/aps.63.162501

    Article  CAS  Google Scholar 

  28. Greenwood RC, Helmer RG, Rogers JW (1975) Nonfission reaction rate measurements. Nucl Technol 25:274–288. https://doi.org/10.13182/NT75-A24368

    Article  CAS  Google Scholar 

  29. Passell TO, Heath RL (1961) Cross sections of threshold reactions for fission neutrons: nickel as a fast flux monitor. Nucl Sci Eng 10:308–315. https://doi.org/10.13182/nse61-a15372

    Article  Google Scholar 

  30. ASTM (2002) E264-02: standard test method for measuring fast-neutron reaction rates by radioactivation of nickel. ASTM International, West Conshohocken

    Google Scholar 

  31. Soppera N, Bossant M, Dupont E (2014) JANIS 4: An improved version of the NEA Java-based nuclear data information system. Nucl Data Sheets 120:294–296. https://doi.org/10.1016/j.nds.2014.07.071

    Article  CAS  Google Scholar 

  32. Yang CD, Gong SL, Deng MC (1995) Chinese Fast Burst Reactor-II (CFBR-II) and its applications. Trends Nucl Phys 12:58–60

    CAS  Google Scholar 

  33. Wu JH, Li JS (1994) Measurement of the neutron spetra of CFBR-II reactor. In: The 9th China National Conference on Nuclear Physics. Chinese Society of Nuclear Physic, Beijing

Download references

Acknowledgements

The authors express gratitude to the CFBR-II crew for the irradiation. We are grateful to Prof. Jiansheng Li and Prof. Xiaobing Luo for their enthusiastic and helpful discussions. We sincerely appreciate the support of the National Natural Science Foundation of China (NSFC No.: 91326104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zeng, L., Ai, Z. et al. Measurement of the 232Th(n, γ)/58Ni(n, p) reaction rate ratio in the leakage neutron field of a fast burst reactor. J Radioanal Nucl Chem 323, 947–952 (2020). https://doi.org/10.1007/s10967-019-06982-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06982-z

Keywords

Navigation