Production of 149Tb, 152Tb, 155Tb and 161Tb from gadolinium using different light-particle beams

Abstract

149Tb, 152Tb, 155Tb and 161Tb can cover all the modalities of diagnostic and therapeutic purposes of nuclear medicine. The production cross sections and yields of radiotheragnostics terbium from x+152,154,155,156,157,158,160Gd reactions in the energy range 0.001 to 200 MeV are evaluated using TALYS1.9. Some p,d,he3-induced reactions show high yields to produce 149Tb while several p,d,t-induced reactions show larger yields to produce 152Tb. For 155Tb productions, number of p,t-induced reactions have higher production yields. To produce 161Tb, one deuteron and one triton induced reaction show bigger production yields. These calculations are compared with EMPIRE 3.2.2 and TENDL-2017 data for prospective reactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    dos Santos Augusto R, Buehler L, Lawson Z, Marzari S, Stachura M, Stora T, CERN-MEDICIS collaboration (2014) Appl Sci 4:265–281. https://doi.org/10.3390/app4020265

    CAS  Article  Google Scholar 

  2. 2.

    Sayed BM (2013) Int J Phys Res 3(2):17–26

    Google Scholar 

  3. 3.

    Cavaier RF, Haddad F, Sounalet T, Stora T, Zahi I (2017) Phys Procedia 90:157–163. https://doi.org/10.1016/j.phpro.2017.09.053

    CAS  Article  Google Scholar 

  4. 4.

    Brandt M, Cardinale J, Aulsebrook ML, Gasser G, Mindt TL (2018) J Nucl Med. https://doi.org/10.2967/jnumed.117.190801

    Article  PubMed  Google Scholar 

  5. 5.

    Al-Suqri B (2014) Oman Med J 29(5):362–364. https://doi.org/10.5001/omj.2014.95

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kam BLR, Teunissen JJM, Krenning EP, de Herder WW, Khan S, van Vliet EI, Kwekkeboom DJ (2012) Eur J Nucl Med Mol Imaging 39(1):103–112. https://doi.org/10.1007/s00259-011-2039-y

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Makvandi M, Dupis E, Engle JW, Nortier FM, Fassbender ME, Simon S, Birnbaum ER, Atcher RW, John KD, Rixe O, Norenberg JP (2018) Targeted Oncol. https://doi.org/10.1007/s11523-018-0550-9

    Article  Google Scholar 

  8. 8.

    Müller C, Zhernosekov K, Koster U, Johnston K, Hohn A, vander Walt TN, Turler A, Schibli R (2012) J Nucl Med 53:1951–1959

    Article  Google Scholar 

  9. 9.

    Marcua L, Bezak E, Allen BJ (2018) Crit Rev Oncol Hematol 123:7–20

    Article  Google Scholar 

  10. 10.

    Dekempeneer Y, Keyaerts M, Krasniqi A, Puttemans J, Muyldermans S, Lahoutte T, D’huyvetter M, Devoogdt N (2016) Expert Opin Biol Ther. https://doi.org/10.1080/14712598.2016.1185412

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grunberg J, Hohn A, Koster U, Schibli R, Turler A, Zhernosekov K (2011) Nucl Med Biol 38:917–924

    CAS  Article  Google Scholar 

  12. 12.

    Zaitseva NG, Dmitriev SN, Beyer GJ, Maslov OD, Molokanova LG, Starodub GY, Shishkin SV, Shishkina TV (2003) Czechoslov J Phys A 53(1):A455–A458

    CAS  Article  Google Scholar 

  13. 13.

    Steyn GF, Vermeulen C, Szelecsényi F, Kovács Z, Hohn A, van der Meulen NP, Schibli R, vander Walt TN (2014) Nucl Instrum Methods Phys Res B 319:128–140

    CAS  Article  Google Scholar 

  14. 14.

    Duchemina C, Guertina A, Haddada F, Michela N, Métiviera V (2016) Appl Radiat Isot 118:281–289

    Article  Google Scholar 

  15. 15.

    Beyer GJ, Čomor JJ, Daković M, Soloviev D, Tamburella C, Hagebø E, Allan B, Dmitriev SN, Zaitseva NG, Starodub GY, Molokanova LG, Vranješ S, Miederer M, ISOLDE Collaboration (2002) Radiochim Acta 90(5):247

    CAS  Article  Google Scholar 

  16. 16.

    Koning AJ, Hilaire S, Duijvestijn MC (2007) Proceedings of the international conference on nuclear data for science and technology nice, France, April 22–27 In: Bersillon O, Gunsing F, Bauge E, Jacqmin R, Leray S (eds) (2008) EDP Sciences, pp 211–214

  17. 17.

    Koning AJ, Delaroche JP (2003) Nucl Phys A 713:231

    Article  Google Scholar 

  18. 18.

    Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der Meulen NP (2016) EJNMMI Res 6:35. https://doi.org/10.1186/s13550-016-0189-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Cell [Grant number: 6317/2018 dated 07/08/2018], University of Chittagong, Chattogram 4331, Bangladesh.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Rezaur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1755 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.K.M.R., Awal, A. Production of 149Tb, 152Tb, 155Tb and 161Tb from gadolinium using different light-particle beams. J Radioanal Nucl Chem 323, 731–740 (2020). https://doi.org/10.1007/s10967-019-06973-0

Download citation

Keywords

  • TALYS
  • EMPIRE 3.2.2
  • Nuclear medicine
  • Radiotheragnostics
  • Terbium
  • Gadolinium