Skip to main content
Log in

Natrophosphate and kogarkoite precipitated from alkaline nuclear waste at Hanford

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Hanford Site, near Richland, Washington in the U.S.A., is implementing a treatment process for liquid radioactive waste. This study determined the mineralogy of existing soilids in the process feed tank, both bulk fine material and large aggregates. The large particulate was cemented kogarkoite (Na3SO4F) and natrophosphate (Na7F(PO4)2·19H2O). The bulk material was also natrophosphate and kogarkoite with trace amounts of gibbsite and Na–C–O-bearing species that are likely sodium oxalate or sodium carbonate. The kogarkoite had an acicular morphology, which has not been observed previously in waste or geological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hill, R, Reynolds J, Rutland P (2011) A comparison of Hanford and Savannah River Site high-level wastes. In: Proceedings of the 13th international high-level waste management conference. American Nuclear Society, La Grange Park, Il, pp 114–117

  2. Peterson R, Buck E, Chun J, Daniel R, Herting D, Ilton E, Lumetta G, Clark S (2018) Review of the scientific understanding of radioactive waste at the U.S. DOE Hanford site. Environ Sci Technol 52:381–396

    CAS  PubMed  Google Scholar 

  3. Buck E, McNamara B (2004) Precipitation of nitrate-cancrinite in Hanford tank sludge. Environ Sci Technol 38:4432–4438

    CAS  PubMed  Google Scholar 

  4. Krupka K, Schaef H, Arey B, Heald S, Deutsch W, Lindberg M, Cantrell K (2006) Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization. Environ Sci Technol 40:3749–3754

    CAS  PubMed  Google Scholar 

  5. Lumetta G, McNamara B, Buck E, Fiskum S, Snow L (2009) Characterization of high phosphate radioactive tank waste and simulant development. Environ Sci Technol 43:7843–7848

    CAS  PubMed  Google Scholar 

  6. Page J, Reynolds J, Ely T, Cooke G (2018) Development of a carbonate crust on alkaline nuclear waste sludge at Hanford. J Hazard Mater 342:375–382

    CAS  PubMed  Google Scholar 

  7. Reynolds J, Cooke G, Page J, Warrant R (2018) Uranium-bearing phases in Hanford nuclear waste. J Radioanal Nucl Chem 316:289–299

    CAS  Google Scholar 

  8. Reynolds J, Cooke G, Herting D, Warrant R (2013) Salt mineralogy of Hanford high-level nuclear waste staged for treatment. Ind Eng Chem Res 52:9741–9751

    CAS  Google Scholar 

  9. Reynolds J, Cooke G, McCoskey J, Callaway W (2016) Discovery of plutonium-bismuth and plutonium-bismuth-phosphorus containing phases in a Hanford waste tank. J Radioanal Nucl Chem 309:973–981

    CAS  Google Scholar 

  10. Reynolds J, Huber H, Cooke G, Pestovich J (2014) Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford. J Hazard Mater 278:203–210

    CAS  PubMed  Google Scholar 

  11. Reynolds J, Page J, Cooke G, Pestovich J (2015) A scanning electron microscopy study of bismuth and phosphate phases in bismuth phosphate process waste at Hanford. J Radioanal Nucl Chem 304:1253–1259

    CAS  Google Scholar 

  12. Reynolds J, Cooke G, Herting D, Warrant R (2012) Evidence for dawsonite in Hanford high-level nuclear waste tanks. J Hazard Mater 209–210:186–192

    PubMed  Google Scholar 

  13. Warrant R, Cooke G (2003) Characterization of the solids waste in the Hanford waste tanks using a combination of XRD, SEM and PLM. Adv X-Ray Anal 46:251–256

    CAS  Google Scholar 

  14. Beam E, Weber C, Hunt R, Dillow T (1998) In: Schultz WW, Lombardo NJ (eds) Science and Technology for Disposal of Radioactive Tank Wastes. Plenum Press, New York, New York

    Google Scholar 

  15. McGinnis C, Welch T, Hunt R (1999) Caustic leaching of high-level radioactive tank sludge: a critical literature review. Sep Sci Technol 34:1479–1494

    CAS  Google Scholar 

  16. Reynolds J, Herting D (2016) Crystallization of sodium phosphate dodecahydrate and re-crystallization into natrophosphate in simulated Hanford nuclear waste. In: Waste management’16 proceedings, Waste Management Symposia Inc., Phoenix, AZ

  17. Russell R, Snow L, Peterson R (2010) Methods to avoid post-filtration precipitation in treatment of high-level waste. Sep Sci Technol 45:1814–1821

    CAS  Google Scholar 

  18. Cree L (2017) Direct-feed low-activity waste: first feed flowsheet. In: Proceedings of waste management 2017. Waste Management Symposia Inc., Phoenix, AZ

  19. Guillen D, Abboud A, Pokorny R, Eaton W, Dixon D, Fox K, Kruger A (2018) Development of a validation approach for an integrated waste glass melter model. Nucl Technol 203:244–260

    Google Scholar 

  20. Rovira A, Geeting J, Allred J, Shimskey R, Burns C, Peterson R, Colosi K (2019) Media comparison of filtration with Hanford tank AP-107 supernate. Sep Sci Technol 54:1912–1921. https://doi.org/10.1080/01496395.2019.1575419

    Article  CAS  Google Scholar 

  21. Rovira A, Fiskum S, Colburn H, Allred J, Smoot M, Peterson R, Colosi K (2019) Cesium ion exchange testing using crystalline silicotitanate with Hanford tank waste 241-AP-107. Sep Sci Technol 54:1942–1951. https://doi.org/10.1080/01496395.2019.1577895

    Article  CAS  Google Scholar 

  22. Wagnon R, Reynolds J, Tardiff B (2017) The integrated waste feed delivery plan for the Direct Feed Low-Activity Waste System. In: Proceedings of waste management 2017. Waste Management Symposia Inc., Phoenix, AZ

  23. Rasmussen J (2019) Derivation of best-basis inventory for tank 241-AP-107 as of January 1, 2019. Washington River Protection Solutions LLC, Richland

    Google Scholar 

  24. ASTM (2011) Standard guide for sampling radioactive tank waste. Standard C1751-11. ASTM International, West Conshohocken

    Google Scholar 

  25. Disselkamp R (2009) 2009 Auto-TCR for tank 241-AP-107. Washington River Protection Solutions LLC, Richland

    Google Scholar 

  26. Miller A (1977) Laser Raman spectrometric determination of oxy anions in nuclear waste materials. Anal Chem 49:2044–2048

    CAS  PubMed  Google Scholar 

  27. Herting D, Reynolds J (2016) The composition of natrophosphate (sodium fluoride phosphate hydrate). Environ Chem Let 14:401–405

    CAS  Google Scholar 

  28. Baur W, Tillmanns E (1974) Salt hydrates. X. The crystal structure determination of heptasodium fluoride bisphosphate 19-hydrate and heptasodium fluoride bisarsenate 19-hydrate and the computer simulation of the isomophous vanadate salt. Acta Cryst B30:2218–2226

    Google Scholar 

  29. Kapustin Y, Bykova A, Bukin V (1972) Natrophosphate, a new mineral. Int Geol Rev 14:984–989

    Google Scholar 

  30. Pakhomovsky Y, Yakovenchuk V, Ivanyuk G (2001) Recent findings of unique mineralogical specimens. Rocks Miner 76:24–37

    Google Scholar 

  31. Forti P, Galli E, Rossi A (2003) Minerogenesis of volcanic caves of Kenya. Int J Speleol 32:3–18

    Google Scholar 

  32. Mitchel R (2006) Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania. Min Mag 70:437–444

    Google Scholar 

  33. Pabst A (1973) Kogarkoite, a new natural phase in the system Na2SO4-NaF-NaCl. Am Min 58:116–127

    CAS  Google Scholar 

  34. Solotchin P, Sklyarov E, Colotchina E, Zamana L, Sklyarova O (2015) A new find of Kogarkoite (Na3SO4F) in Transbaikalia. Doklady Earth Sci 462:643–647

    CAS  Google Scholar 

  35. Zacek V, Rapprich V, Sima J, Skoda R, Laufek F, Legesa F (2015) Kogarkoite, Na3(SO4)F, from the shalo hot springs, Main Ethiopian Rift: implications for F-enrichment of thermal groundwater related to alkaline silicic volcanic rocks. J Geosci 60:171–179

    Google Scholar 

  36. Gedem S, Dhoble S, Omanwat S, Moharil S (2007) TL in halosulphate phosphors prepared by wet chemical method. Eur Phys J Appl Phys 39:39–43

    Google Scholar 

  37. Gedem S, Dhoble S, Moharil S (2012) Dy3+ and Mn2+ emission in fluoride- and chloride-based Na3(SO4)X (X = F or Cl) phosphors. Luminescence 27:441–446

    Google Scholar 

  38. Braithwaite C, Montaggioni L (2009) The great barrier reef: a 7,000,000 year diagenetic history. Sedimentology 56:1591–1622

    CAS  Google Scholar 

  39. Fu W, Vaughan J, Gillespie A (2014) Effects of inorganic anions on the morphology of sodium oxalate crystallized from highly alkaline solutions. Cryst Growth Des 14:1972–1980

    CAS  Google Scholar 

  40. Petrie J, Donovan R, Van Der Cook R, Christensen W (1976) Putting evaporators to work: vacuum evaporator-crystallizer handles radioactive waste. Chem Eng Prog 72:65–71

    CAS  Google Scholar 

  41. Herting D, Reynolds J, Barton W (2014) Conversion of coarse gibbsite remaining in Hanford nuclear waste tank heels to solid sodium aluminate. Ind Eng Chem Res 53:13833–13842

    CAS  Google Scholar 

  42. Rodriguez A, van Bergen M (2017) Superficial alteration mineralogy in active volcanic systems: an example of Poas volcano, Costa Rica. J Volcanol Geotherm Res 346:54–80

    CAS  Google Scholar 

  43. Peterson O (2001) Natrophosphate from the llimaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:139–141

    Google Scholar 

  44. Petersen O, Fockengerg T, Toft P, Rattay M (1997) Natrophosphate from Aris phonolites, Windhock, Namibia. Neues Jahr F Min-Monat 11:511–517

    Google Scholar 

  45. Nielsen J (1999) East African magadi (trona): fluoride concentration and mineralogical composition. J Afr Earth Sci 29:423–428

    CAS  Google Scholar 

  46. Crichton S, Barbieri T, Tomozawa M (1995) Solubility limits for troublesome components in a simulated low level waste glass. Ceram Trans 61:283–290

    CAS  Google Scholar 

  47. Crichton S, Barbieri T, Tomozawa M (1995) Volatilization rates of troublesome components from a simulated low level nuclear waste glass. Ceram Trans 61:291–298

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob G. Reynolds.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolling, S.D., Reynolds, J.G., Ely, T.M. et al. Natrophosphate and kogarkoite precipitated from alkaline nuclear waste at Hanford. J Radioanal Nucl Chem 323, 329–339 (2020). https://doi.org/10.1007/s10967-019-06924-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06924-9

Keywords

Navigation