Synthesis of magnetic-carbon sorbent for removal of U(VI) from aqueous solution

Abstract

An functional magnetic and carbon-based adsorbent, noted as Fe3O4@HTC-NaOH, was synthesized by hydrothermal and NaOH treatment processing. The results of FT-IR spectrum and ξ-potential showed the surface of Fe3O4@HTC-NaOH existed losts of f-lactonic and sodium carboxylic acid (COONa) groups and was relatively negative. The U(VI) adsorption capacities onto the Fe3O4@HTC-NaOH reached the maximum of 761.20 mg/g, showing a high efficiency for removal U(VI) from polluted water. In addition, the adsorption products can be readily separated from contaminated solutions using a magnet. The results indicated that Fe3O4@HTC-NaOH possessed potential application in the remediation of uranium polluted water and soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Abdeen Z, Akl ZF (2015) Uranium(VI) adsorption from aqueous solutions using poly(Vinyl Alcohol)/carbon nanotube composites. RSC Adv 5:74220–74229

    CAS  Google Scholar 

  2. 2.

    Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117(23):13935–14013

    CAS  PubMed  Google Scholar 

  3. 3.

    Asselin S, Ingram JC (2014) Uranium leaching from contaminated soil utilizing rhamnolipid, edta, and citric acid. Appl Environ Soil Sci 2014:1–6

    Google Scholar 

  4. 4.

    Banning A, Benfer M (2017) Drinking water uranium and potential health effects in the German Federal State of Bavaria. Int J Environ Res Public Health 14(8):927

    PubMed Central  Google Scholar 

  5. 5.

    Barrett CA, Chouyyok W, Speakman RJ, Olsen KB, Addleman RS (2017) Rapid extraction and assay of uranium from environmental surface samples. Talanta 173:69–78

    CAS  PubMed  Google Scholar 

  6. 6.

    Bem H, Bou-Rabee F (2004) Environmental and health consequences of depleted uranium use in the 1991 Gulf War. Environ Int 30:123–134

    CAS  PubMed  Google Scholar 

  7. 7.

    Bersimbaev RI, Bulgakova O (2015) The health effects of radon and uranium on the population of Kazakhstan. Genes Environ 37(1):18

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Caccin Matteo, Giacobbo Francesca, Da Ros Mirko, Besozzi Luigi, Mariani Mario (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    CAS  Google Scholar 

  9. 9.

    Cantaluppi C, Degetto S (2000) Civilian and military uses of depleted uranium: environmental and health problems. Ann Chim 90:665–676

    CAS  PubMed  Google Scholar 

  10. 10.

    Shim JW, Park SJ, Ryu SK (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39(11):1635–1642

    CAS  Google Scholar 

  11. 11.

    Lu BQ, Li M, Zhang XW, Huang CM, Wu XY, Fang Q (2018) Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. J Hazard Mater 343:255–265

    CAS  PubMed  Google Scholar 

  12. 12.

    Mahmoud ME, Osman MM, Hafez OF, Elmelegy E (2010) Removal and Preconcentration of lead (II), copper (II), chromium (III) and iron (III) from Wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2-naphthol. J Hazard Mater 173:349–357

    CAS  PubMed  Google Scholar 

  13. 13.

    Saleh Tawfik A, Naeemullah Mustafa Tuzen, Sarı Ahmet (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227

    CAS  Google Scholar 

  14. 14.

    Shao Dadong, Wang Xiangxue, Li Jiaxing, Huang Yongshun, Ren Xuemei, Hou Guangshun, Wang Xiangke (2015) Reductive immobilization of uranium by Paam–Fes/Fe3o4 Magnetic composites. Environ Sci Water Res Technol 1:169–176

    CAS  Google Scholar 

  15. 15.

    Singhal P, Jha SK, Pandey SP, Neogy S (2017) Rapid extraction of uranium from sea water using Fe3o4 and humic acid coated Fe3o4 nanoparticles. J Hazard Mater 335:152–161

    CAS  PubMed  Google Scholar 

  16. 16.

    Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48:367–387

    CAS  Google Scholar 

  17. 17.

    Nekhunguni PM, Tavengwa NT, Tutu H (2017) Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: assessment of the effect of Ph, contact time, temperature, selected cations and anions on sorbent interactions. J Environ Manage 204:571–582

    CAS  PubMed  Google Scholar 

  18. 18.

    Rezaei A, Khani H, Masterifarahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4(12):4107–4114

    CAS  Google Scholar 

  19. 19.

    Lai Z, Zhang Z, Cao X, Dai Y, Hua R, Le Z, Luo M, Liu Y (2016) Synthesis of novel functional hydrothermal carbon spheres for removal of uranium from aqueous solution. J Radioanal Nucl Chem 310:1335–1344

    CAS  Google Scholar 

  20. 20.

    Han X, Wang Y, Cao X, Dai Y, Liu Y (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040

    CAS  Google Scholar 

  21. 21.

    Zhang Z, Dong Z, Wang X, Ying D (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    CAS  Google Scholar 

  22. 22.

    Zhang Z, Liu J, Cao X, Luo X (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642

    CAS  PubMed  Google Scholar 

  23. 23.

    Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV, Saprunova NA, Radkecich AV, Ku’bitskaya LV (2014) Sorption of strontium ions from solutions onto calcium and magnesium phosphates. Radiochemistry 56(1):32–37

    CAS  Google Scholar 

  24. 24.

    Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivoshapkin PV, Krivoshapkina EF, Sillanpää M (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683

    CAS  Google Scholar 

  25. 25.

    Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM (2016) Mesoporous manganese oxides prepared by sol-gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6(Complete):S2215153216300897

    Google Scholar 

  26. 26.

    Ivanets AI, Milutin VV, Prozorovich VG, Kouznetsova TF, Netrasova NA (2019) Adsorption properties of manganese oxides prepared in aqueous-ethanol medium toward Sr(II) ions. J Radioanal Nucl Chem 321:243–253

    CAS  Google Scholar 

  27. 27.

    Kitikova NV, Ivanets AI, Shashkova IL, Radkevich AV, Shemet LV, Kulbitskaya LV, Sillanpää M et al (2017) Batch study of 85 Sr adsorption from synthetic seawater solutions using phosphate sorbents. J Radioanal Nucl Chem 8:1–11

    Google Scholar 

  28. 28.

    Heinen AW, Peters JA, Bekkum HV (2000) Competitive adsorption of water and toluene on modified activated carbon supports. Appl Catal A Gen 194(99):193–202

    Google Scholar 

  29. 29.

    Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191

    CAS  Google Scholar 

  30. 30.

    Tan L, Liu Q, Jing X, Liu J, Song D, Songxia H, Liu L, Wang J (2015) Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315

    CAS  Google Scholar 

  31. 31.

    Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3o4@C@Layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52:10152–10159

    CAS  Google Scholar 

  32. 32.

    Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic Tio2/Fe3o4 and its graphene composite. Environ Sci Technol 51:5666–5674

    CAS  PubMed  Google Scholar 

  33. 33.

    Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    CAS  Google Scholar 

  34. 34.

    Yang X, Li J, Liu J (2013) Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J Mater Chem A 2:1550–1559

    Google Scholar 

  35. 35.

    Zhang X, Wang J, Li R, Dai Q, Liu L (2013) Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3o4 particles. New J Chem 37:3914–3919

    CAS  Google Scholar 

  36. 36.

    Das D, Sureshkumar MK, Koley S (2010) Sorption of uranium on magnetite nanoparticles. J Radioanal Nucl Chem 285(3):447–454

    CAS  Google Scholar 

  37. 37.

    Gao Y, Yuan Y, Ma D, Li L, Li Y, Wenhui X, Tao Wei (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453:82–90

    CAS  Google Scholar 

  38. 38.

    Lin J, Sun W, Desmarais J, Chen N, Feng R, Zhang P, Li D, Lieu A, Tse JS, Pan Y (2018) Uptake and speciation of uranium in synthetic gypsum (Caso4*2h2o): applications to radioactive mine tailings. J Environ Radioact 181:8–17

    CAS  PubMed  Google Scholar 

  39. 39.

    Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299

    CAS  PubMed  Google Scholar 

  40. 40.

    Zhou L, Zou H, Jin J, Liu Z, Luo T (2016) Preparation of phosphonic acid-functionalized silica magnetic microspheres for uranium(VI) adsorption from aqueous solutions. J Radioanal Nucl Chem 310(3):1155–1163

    CAS  Google Scholar 

  41. 41.

    Mahmoud ME, Khalifa MA, El Wakeel YM, Header MS, Abdel-Fattah MT (2017) Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution. J Nucl Mater 487:13–22

    CAS  Google Scholar 

  42. 42.

    Meng F, Yuan G, Larson SL, Ballard JH, Waggoner CA, Arslan Z, Han FX (2017) Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. J Environ Radioact 180:1–8

    CAS  PubMed  Google Scholar 

  43. 43.

    Jing C, Li YL, Landsberger S (2016) Review of soluble uranium removal by nanoscale zero valent iron. J Environ Radioact 164:65–72

    CAS  PubMed  Google Scholar 

  44. 44.

    Corlin L, Rock T, Cordova J, Woodin M, Durant JL, Gute DM, Ingram J, Brugge D (2016) Health effects and environmental justice concerns of exposure to uranium in drinking water. Curr Environ Health Rep 3:434–442

    CAS  PubMed  Google Scholar 

  45. 45.

    Elsayed AA (2008) Kinetics and thermodynamics of adsorption of trace amount of uranium on activated carbon. Radiochim Acta 96:481–486

    CAS  Google Scholar 

  46. 46.

    Gopalan A, Philips MF, Jeong JH, Lee KP (2014) Synthesis of novel poly(amidoxime) grafted multiwall carbon nanotube gel and uranium adsorption. J Nanosci Nanotechnol 14(3):2451–2458

    CAS  PubMed  Google Scholar 

  47. 47.

    Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3o4@Sio2 composite particles. J Environ Radioact 106:40–46

    CAS  PubMed  Google Scholar 

  48. 48.

    Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21561002, 21866004) and the Science & Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi-bin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, Z., Xuan, Zq., Yu, Sf. et al. Synthesis of magnetic-carbon sorbent for removal of U(VI) from aqueous solution. J Radioanal Nucl Chem 322, 2079–2089 (2019). https://doi.org/10.1007/s10967-019-06907-w

Download citation

Keywords

  • Uranium
  • Carbon
  • Magnetic sorbents
  • Remediation