Advertisement

Analysis of radionuclide production in cyclotrons for application in positron emission tomography (PET)

  • José RódenasEmail author
  • Eva Jabaloyas
Article
  • 18 Downloads

Abstract

The present work focuses on the analysis of nuclear reactions that can occur in a cyclotron for the generation of radionuclides compliant with the restrictions necessary for medical use in a PET. These radionuclides ought to meet some features, such as being positron emitters and having a half-life as short as possible, considering the times of processing and administration of the radiopharmaceutical. The radionuclides studied, 61Cu, 64Cu and 68Ga, meet these conditions. A commercial cyclotron has been modelled with an energy of 18 MeV for protons. Several simulations have been carried out with the model, using different materials as a target. The model validation has been done comparing results with experimental data from the literature.

Keywords

Nuclear reactions Cyclotron Monte Carlo Radiopharmaceuticals Positron emission tomography Production of radionuclides 

Notes

Acknowledgements

Authors wish to thank professor Francisco Alves from Institute of Nuclear Sciences Applied to Health (ICNAS) of the University of Coimbra, Portugal, for his suggestions and help providing data to validate the developed model for MCNP.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest.

References

  1. 1.
  2. 2.
    Alves F, Alves VHP, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ (2017) Mod Phys Lett A.  https://doi.org/10.1142/s0217732317400132 CrossRefGoogle Scholar
  3. 3.
    Costa P, Metello L, Alves F, Duarte Naia M (2018) Instruments.  https://doi.org/10.3390/instruments2020008 CrossRefGoogle Scholar
  4. 4.
    Qaim S (2017) Nuclear data for production and medical applications of radionuclides. Present Status Nucl Med Biol 44:31–49CrossRefGoogle Scholar
  5. 5.
    Anderson CJ, Ferdani R (2009) Cancer Biother Radiopharm.  https://doi.org/10.1089/cbr.2009.0674 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Do Carmo SJC, Alves VHP, Alves F, Abrunhosa AJ (2017) Dalton Trans.  https://doi.org/10.1039/c7dt01836c CrossRefPubMedGoogle Scholar
  7. 7.
    Romero Sanz E (2017) Desarrollo de un generador de 68Ge/68 Ga. Aplicaciones del 68 Ga en tomografía por emisión de positrones. Univ. Complutense de Madrid, Madrid, SpainGoogle Scholar
  8. 8.
    International Atomic Energy Agency (2019) Gallium-68 cyclotron production, IAEA-TECDOC-1863. IAEA, ViennaGoogle Scholar
  9. 9.
    MCNP6 User’s Manual (2018) Code Version 6.1, Los Alamos National Laboratory, Los Alamos, New MexicoGoogle Scholar
  10. 10.
    Koning AJ, Rochman D, Sublet JC, Dzysiuk N, Fleming M, van der Marck S (2019) TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 155:1–55CrossRefGoogle Scholar
  11. 11.
    Sadeghi M, Kakavand T, Mokhtari L, Gholamzadeh Z (2009) Pramana J Phys.  https://doi.org/10.1007/s12043-009-0029-42009) CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical and Nuclear EngineeringUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations