Skip to main content
Log in

Assessment of radiological impacts of natural radionuclides and radon exhalation rate measured in the soil samples of Himalayan foothills of Uttarakhand, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to assess the radiological baseline, the terrestrial radionuclide contents (226Ra, 232Th, and 40K) and radon exhalation rate were measured in the soil samples collected from the vicinity of Himalayan foothills of Uttarakhand, India. Based on the measured activity concentrations of 226Ra, 232Th and 40K, different radiological parameters have been estimated to assess the radiation hazards arising out of the use of these soil samples as a building material in the studied region. The annual effective doses for distinct organs and tissues have also been calculated in order to assess total radiological risk. The overall radiological dose was less than the recommended values of 1 mSv y−1. No significant correlation was observed between 226Ra, 232Th concentration and its exhalation rate in the studied soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UNSCEAR (2008) United Nations scientific committee on the effects of atomic radiation, sources and biological effects of ionizing radiation. Report to the general assembly with scientific annexes. United Nations, New York

  2. Asha R, Surinder S (2005) Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using g-ray spectrometry. Atmos Environ 39:6306–6314

    Google Scholar 

  3. Nageswara Rao MV (1989) Natural radioactivity levels in some environmental materials from Rajasthan. Bull Radiat Prot 12:36–41

    Google Scholar 

  4. Menon MR, Mishra UC, Lalit BY, Shukla VK, Ramachandran TV (1982) Uranium, thorium and potassium in Indian rocks and ores. Proc Indian Acad Sci Earth Planet Sci 91(2):127–136

    CAS  Google Scholar 

  5. Khan K, Khan HM, Tufail M, Khatibeh AJ, Ahmad N (1998) Radiometric analysis of Hazarad phosphate rock and fertilizers in Pakistan. J Environ Radioact 38(1):77–84

    CAS  Google Scholar 

  6. UNSCEAR (1993) United Nations scientific committee on the effects of atomic radiation. Forty-second session of UNSCEAR. United Nations, New York

    Google Scholar 

  7. UNSCEAR (2000) United Nations scientific committee of the effect of atomic radiation (UNSCEAR). Sources, effects and risks of ionizing radiations. United Nations, New York

    Google Scholar 

  8. Bennett BG (1997) Exposure to natural radiation worldwide. In: Proceedings of the 4th international conference on high levels of natural radiation: radiation doses and health effects, Beijing, China, pp 15–23

  9. Venunathan N, Kaliprasad CS, Narayana Y (2016) Natural radioactivity in sediments and river bank soil of Kallada river of Kerala, South India and associated radiological risk. Radiat Prot Dosim 171(2):271–276

    CAS  Google Scholar 

  10. Paschoa AS (2000) More than 40 years of studies of natural radioactivity in Brazil. Technology 7(2–3):193–212

    Google Scholar 

  11. Wei L, Sugahara T (2000) An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China. J Radiat Res 41:1–7

    PubMed  Google Scholar 

  12. Sunta CM, David M, Abani MC, Basu AS, Nambi KS (1982) Analysis of dosimetry data of high natural radioactivity areas of SW coast of India. In: Natural radiation environment, pp 35–42

  13. Sunta CM (1993) A review of the studies of high background areas of the SW coast of India. In: Proceedings of the international conference on high levels of natural radiation, IAEA, Ramsar, pp 71–86

  14. Ghiassi-Nejad M, Mortazavi SM, Cameron JR, Niroomand-Rad A, Karam PA (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82(1):87–93

    CAS  PubMed  Google Scholar 

  15. Radhakrishna AP, Somashekarappa HM, Narayana Y, Siddappa K (1993) A new natural background radiation area on the southwest coast of India. Health Phys 65(4):390–395

    CAS  PubMed  Google Scholar 

  16. Kannan V, Rajan MP, Iyengar MA, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57(1):109–119

    CAS  PubMed  Google Scholar 

  17. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330(7485):223

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, William Field R, Klotz JB, Létourneau EG, Lynch CF, Lyon JL, Sandler DP (2006) A combined analysis of North American case-control studies of residential radon and lung cancer. J Toxicol Environ Health Part A 69(7–8):533–597

    CAS  PubMed  Google Scholar 

  19. Chauhan RP, Chauhan P, Pundir A, Kamboj S, Bansal V, Saini RS (2013) Estimation of dose contribution from 226Ra, 232Th and 40K radon exhalation rates in soil samples from Shivalik foot hills in India. Radiat Prot Dosim 158(1):79–86

    Google Scholar 

  20. Bangotra P, Mehra R, Kaur K, Jakhu R (2016) Study of natural radioactivity (226Ra, 232Th and 40K) in soil samples for the assessment of average effective dose and radiation hazards. Radiat Prot Dosim 171(2):277–281

    CAS  Google Scholar 

  21. Gusain GS, Badoni M, Prasad G, Prasad Y, Ramachandran TV, Ramola RC (2009) Studies of natural radionuclides and dose estimation from soil samples of Kumaun Himalaya, India. Indian J Phys 83(8):1215–1220

    CAS  Google Scholar 

  22. Ramola RC, Choubey VM, Prasad G, Gusain GS, Tosheva Z, Kies A (2011) Radionuclide analysis in the soil of Kumaun Himalaya, India, using gamma ray spectrometry. Curr Sci 100(6):906–914

    CAS  Google Scholar 

  23. Ramola RC, Yadav M, Gusain GS (2014) Distribution of natural radionuclide along main central thrust in Garhwal Himalaya. J Radiat Res Appl Sci 7(4):614–619

    Google Scholar 

  24. Yadav M, Rawat M, Dangwal A, Prasad M, Gusain GS, Ramola RC (2014) Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya. J Radioanal Nucl Chem 302(2):869–873

    CAS  Google Scholar 

  25. Yadav M, Rawat M, Dangwal A, Prasad M, Gusain GS, Ramola RC (2015) Analysis of natural radionuclides in soil samples of Purola area of Garhwal Himalaya, India. Radiat Prot Dosim 167(1–3):215–218

    CAS  Google Scholar 

  26. Bangotra P, Mehra R, Jakhu R, Kaur K, Pandit P, Kanse S (2017) “Estimation of 222Rn exhalation rate and assessment of radiological risk from activity concentration of 226Ra, 232Th and 40K. J Geochem Explor 184:304–310

    Google Scholar 

  27. Gaware JJ, Sahoo BK, Sapra BK, Mayya YS (2011) Indigenous development and networking of online radon monitors in the underground uranium mine. Radiat Prot Environ 34(1):37

    Google Scholar 

  28. Sahoo BK, Nathwani D, Eappen KP, Ramachandran TV, Gaware JJ, Mayya YS (2007) Estimation of radon emanation factor in Indian building materials. Radiat Meas 42(8):1422–1425

    CAS  Google Scholar 

  29. Sahoo BK, Agarwal TK, Gaware JJ, Sapra BK (2014) Thoron interference in radon exhalation rate measured by solid state nuclear track detector based can technique. J Radioanal Nucl Chem 302(3):1417–1420

    CAS  Google Scholar 

  30. Kanse SD, Sahoo BK, Sapra BK, Gaware JJ, Mayya YS (2013) Powder sandwich technique: a novel method for determining the thoron emanation potential of powders bearing high 224Ra content. Radiat Meas 48:82–87

    CAS  Google Scholar 

  31. OCED (1979) Organization for economic cooperation and development, exposure to radiation from the natural radioactivity in building materials. Report by a group of experts of the OECD Nuclear Energy Agency, OECD, Paris, France

  32. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48(1):87–95

    CAS  Google Scholar 

  33. ICRP (2000) International commission on radiological protection. Protection of the public in situations of prolonged radiation exposure. In: ICRP publication 82. Pergamon Press, Oxford

  34. European Commission (2000) Radiological protection principles concerning the natural radioactivity of building materials directorate-general environment, nuclear safety and civil protection. Luxembourg, Belgium

  35. Rafique M, Rehman H, Malik F, Rajput MU, Rahman SU, Rathore MH (2011) Assessment of radiological hazards due to soil and building materials used in Mirpur Azad Kashmir, Pakistan. Int J Radiat Res 9(2):77–87

    Google Scholar 

  36. Tufail M, Rashid T, Mahmood AB, Ahmad N (1994) Radiation doses in Pakistani houses. Sci Total Environ 142:171–177

    CAS  PubMed  Google Scholar 

  37. Ahmad N, Hussein AJ, Aslam A (1998) Radiation doses in Jordanian dwellings due to natural radioactivity in construction materials and soil. J Environ Radioact 41:127–136

    CAS  Google Scholar 

  38. O’Brien K, Sanna R (1976) The distribution of absorbed dose-rates in humans from exposure to environmental gamma rays. Health Phys 30(1):71–78

    PubMed  Google Scholar 

  39. O’Brien K, Sanna R (1978) The effect of the male-female body-size difference on absorbed dose-rate distributions in humans from natural gamma rays. Health Phys 34(1):107–112

    PubMed  Google Scholar 

  40. UNSCEAR (1988) United Nations scientific committee on the effects of atomic radiation. Sources, effects and risks of ionizing radiation. United Nations, New York

  41. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100(1):49–53

    CAS  PubMed  Google Scholar 

  42. ICRP (1990) International Commission on radiological protection. Recommendations of the international commission on radiological protection. Publication 60 Ann. 21, pp 1–3

  43. ICRP (2007) International Commission on radiological protection: annals of the ICRP Publication 103, Elsevier, pp 2–4

  44. Kandari T, Prasad M, Pant P, Semwal P, Bourai AA, Ramola RC (2018) Study of radon flux and natural radionuclides (226 Ra, 232Th and 40K) in the main boundary thrust region of Garhwal Himalaya. Acta Geophys 66(5):1243–1248

    Google Scholar 

  45. Rani A, Mittal S, Mehra R, Ramola RC (2015) Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India. Appl Radiat Isot 101:122–126

    CAS  PubMed  Google Scholar 

  46. Hassan N, Ishikawa T, Hosoda M, Sorimachi A, Tokonami S, Fukushi M, Sahoo S (2009) Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan. J Radioanal Nucl Chem 283(1):15–21

    Google Scholar 

  47. Myrick TE, Berven BA, Haywood FF (1983) Determination of concentrations of selected radionuclides in surface soil in the US. Health Phys 45(3):631–642

    CAS  PubMed  Google Scholar 

  48. Huy NQ, Hien PD, Luyen TV, Hoang DV, Hiep HT, Quang NH, Long NQ, Nhan DD, Binh NT, Hai PS, Ngo NT (2012) Natural radioactivity and external dose assessment of surface soils in Vietnam. Radiat Prot Dosim 151(3):522–531

    CAS  Google Scholar 

  49. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88(2):158–170

    CAS  PubMed  Google Scholar 

  50. Asgharizadeh F, Ghannadi M, Samani AB, Meftahi M, Shalibayk M, Sahafipour SA, Gooya ES (2013) Natural radioactivity in surface soil samples from dwelling areas in Tehran city, Iran. Radiat Prot Dosim 156(3):376–382

    CAS  Google Scholar 

  51. Caridi F, Marguccio S, Belvedere A, Belmusto G (2015) Measurements of gamma radioactivity in river sediment samples of the Mediterranean Central Basin. Am J Con-densed Matter Phys 5(3):61–68

    Google Scholar 

  52. Lu X, Zhang X, Wang F (2008) Natural radioactivity in sediment of Wei River, China. Environ Geol 53(7):1475–1481

    CAS  Google Scholar 

  53. Akhtar N, Tufail M, Ashraf M, Iqbal MM (2005) Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Radiat Meas 39(1):11–14

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of the Director, NIT Jalandhar for providing the instrumentation facilities in Environment Monitoring and Assessment Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the preparation of this manuscript.

Corresponding author

Correspondence to R. Mehra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anamika, K., Mehra, R. & Malik, P. Assessment of radiological impacts of natural radionuclides and radon exhalation rate measured in the soil samples of Himalayan foothills of Uttarakhand, India. J Radioanal Nucl Chem 323, 263–274 (2020). https://doi.org/10.1007/s10967-019-06876-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06876-0

Keywords

Navigation