Skip to main content

Meteoric 10Be concentrations in the center of Mexico


The 1MV AMS system installed at National Accelerator Mass Spectrometry Laboratory (LEMA) has been used to determine the meteoric 10Be concentrations from particulate matter at the center of Mexico during 2012. The meteoric 10Be concentration range between (1.1 ± 14%, and 5.1 ± 12%) × 104 atoms m−3. In this work, we presented the first data of concentrations of meteoric 10Be found in this kind of samples by using AMS technique in Mexico.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Padilla S, López-Gutiérrez JM, Manjón G et al (2019) Meteoric 10Be in aerosol filters in the city of Seville. J Environ Radioact 196:15–21

    CAS  Article  Google Scholar 

  2. 2.

    Heikkilä U, Smith AM (2012) Influence of model resolution on the atmospheric transport of 10Be. Atmos Chem Phys 12:10601–10612

    Article  Google Scholar 

  3. 3.

    Graly JA, Bierman PR, Reusser LJ, Pavich MJ (2010) Meteoric 10Be in soil profiles—a global meta-analysis. Geochim Cosmochim Acta 74:6814–6829

    CAS  Article  Google Scholar 

  4. 4.

    Aldahan A, Hedfors J, Possnert G et al (2008) Atmospheric impact on beryllium isotopes as solar activity proxy. Geophys Res Lett 35:1–5

    Article  Google Scholar 

  5. 5.

    Field C, Schmidt GA, Koch D (2005) Solar and climatic effects on Beryllium-10. In: Mem. S.A. It. 76 p 805

  6. 6.

    Berggren A-M (2009) Influence of solar activity and environment on 10Be in recent natural archives. PhD Thesis, Faculty of Science and Technology, Uppsala Universitet

  7. 7.

    Frank M, Schwarz B, Baumann S et al (1997) A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth Planet Sci Lett 149:121–129

    CAS  Article  Google Scholar 

  8. 8.

    Wagner G, Beer J, Muscheler R et al (2001) Presence of the solar de Vries cycle (~250 years) during the last ice age. Geophys Res Lett 28:303–306

    Article  Google Scholar 

  9. 9.

    Willenbring JK, von Blanckenburg F (2010) Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth Sci Rev 98:105–122

    CAS  Article  Google Scholar 

  10. 10.

    Pedro JB, McConnell JR, van Ommen TD et al (2012) Solar and climate influences on ice core10Be records from Antarctica and Greenland during the neutron monitor era. Earth Planet Sci Lett 355–356:174–186

    Article  Google Scholar 

  11. 11.

    Elsässer C, Wagenbach D, Weller R et al (2011) Continuous 25-year aerosol records at coastal Antarctica: part 2: variability of the radionuclides 7Be, 10Be, and 210Pb. Tellus Ser B Chem Phys Meteorol 63:920–934

    Article  Google Scholar 

  12. 12.

    Von Blanckenburg F, Bouchez J (2014) River fluxes to the sea from the ocean’s 10Be/9Be ratio. Earth Planet Sci Lett 387:34–43

    Article  Google Scholar 

  13. 13.

    Sampath DMR, Boski T (2016) Morphological response of the saltmarsh habitats of the Guadiana estuary due to flow regulation and sea-level rise. Estuar Coast Shelf Sci 183:314–326

    Article  Google Scholar 

  14. 14.

    Auer M, Kutschera W, Priller A et al (2007) Measurement of 26Al for atmospheric and climate research and the potential of 26Al/10Be ratios. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 259:595–599

    CAS  Article  Google Scholar 

  15. 15.

    Auer M, Wagenbach D, Wild EM et al (2009) Cosmogenic 26Al in the atmosphere and the prospect of a 26Al/10Be chronometer to date old ice. Earth Planet Sci Lett 287:453–462

    CAS  Article  Google Scholar 

  16. 16.

    Yamagata T, Sugihara S, Morinaga I et al (2010) Short term variations of 7Be,10Be concentrations in atmospheric boundary layer. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:1135–1138

    CAS  Article  Google Scholar 

  17. 17.

    Chmeleff J, von Blanckenburg F, Kossert K, Jakob D (2010) Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:192–199

    CAS  Article  Google Scholar 

  18. 18.

    Korschinek G, Bergmaier A, Faestermann T et al (2010) A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:187–191

    CAS  Article  Google Scholar 

  19. 19.

    Scognamiglio G (2017) Optimization of 10Be and 26Al detection with low-energy accelerator mass spectrometry. PhD Thesis, University of Seville

  20. 20.

    Butler OT, Cairns WRL, Cook JM, Davidson CM (2014) 2013 Atomic spectrometry update—a review of advances in environmental analysis. J Anal At Spectrom 29:17–50

    CAS  Article  Google Scholar 

  21. 21.

    Solís C, Chávez-Lomelí E, Ortiz ME et al (2014) A new AMS facility in Mexico. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 331:233–237

    Article  Google Scholar 

  22. 22.

    Calvo EC, Santos FJ, López-Gutiérrez JM et al (2015) Status report of the 1 MV AMS facility at the Centro Nacional de Aceleradores. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 361:13–19

    CAS  Article  Google Scholar 

  23. 23.

    Scognamiglio G, Lachner J, Chamizo E et al (2019) 10Be low-energy AMS with the passive absorber technique. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 438:113–118

    CAS  Article  Google Scholar 

  24. 24.

    De Los Rios K, Méndez-Garcia C, Padilla S, et al. (2018) Characterization of the LEMA isotope separator to measure concentrations of 10Be from atmospheric filters. J Phys Conf Ser 1078:1–8

    Google Scholar 

  25. 25.

    Nishiizumi K, Imamura M, Caffee MW et al (2007) Absolute calibration of 10Be AMS standards. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 258:403–413

    CAS  Article  Google Scholar 

  26. 26.

    PEMBU (2019)

  27. 27.

    Chengde S (1992) 10Be in Chinese loess. Earth Planet Sci Lett 109:169–177

    Article  Google Scholar 

  28. 28.

    Mugica V, Sánchez G, Vega E et al (2002) Chemical composition of fugitive dust emitters in Mexico City. Atmos Environ 35:4033–4039

    Google Scholar 

  29. 29.

    Heikkilä U (2007) Modeling of the atmospheric transport of the cosmogenic radionuclides 10Be and 7Be using the ECHAM5–HAM general circulation model. ETH Zürich, Zürich

    Google Scholar 

  30. 30.

    Solís C, Gómez V, Ortíz E et al (2017) AMS 14C and chemical composition of atmospheric aerosols from Mexico City. Radiocarbon 59:321–332

    Article  Google Scholar 

Download references


The authors are grateful to all collaborators that contributed to this work. This research was funded by Grants CONACyT LN-280769, LN-294537, and the DGAPA-PAPIIT AG100619, IG100313, IG101016, and IA103218. We thank Elizabeth Romero for her contribution to the elemental analysis at ININ and Sergio Martínez for his technical support.

Author information



Corresponding author

Correspondence to C. G. Méndez-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Méndez-García, C.G., Padilla, S., Solís, C. et al. Meteoric 10Be concentrations in the center of Mexico. J Radioanal Nucl Chem 322, 1455–1460 (2019).

Download citation


  • Accelerator mass spectrometry
  • Radiochemistry
  • Meteoric 10Be
  • PM10
  • Mexico city
  • Cuernavaca