Skip to main content
Log in

The inorganic fraction in e-liquids used in vapor products including e-cigarettes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nowadays, e-cigarettes are largely used, they are considered less dangerous than the traditional cigarettes. Actually, there are a lot of investigations on the health effects of nanoparticles and smoke emitted by them whereas there are very few studies on the e-liquid composition. For the first time this paper would like to investigate the inorganic composition of the e-liquids at different nicotine content (0, 9 and 18 mg mL−1) by means of the instrumental nuclear activation analysis. More than 20 elements at trace/ultra-trace levels were determined: elements such as Na, W, Br, Fe and Co show similar distribution in all the samples, toxic elements as As, Ni and Sb are at μg kg−1 levels whereas Hg is present only in the sample at 0 mg mL−1 nicotine (0.56 µg kg−1). Further, based on transfer rate data of some metals from tobacco to smoke, an evaluation of inhaled element amount during a single vape is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tindle HA, Duncan MS, Greevy RA, Vasan RS, Kundu S, Massion PP, Freiberg MS (2018) Lifetime smoking history and risk of lung cancer: results from the Framingham heart study. J Natl Cancer I: JNCI. https://doi.org/10.1093/jnci/djy041

    Article  Google Scholar 

  2. Manigrasso M, Buonanno G, Stabile L, Morawska L, Avino P (2015) Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environ Pollut 202:24–31

    Article  CAS  Google Scholar 

  3. Protano C, Manigrasso M, Avino P, Sernia S, Vitali M (2016) Second-hand smoke exposure generated by new electronic devices (IQOS® and e-cigs) and traditional cigarettes: submicron particle behaviour in human respiratory system. Ann Ig 28:109–112

    CAS  PubMed  Google Scholar 

  4. Dawkins L, Cox S, Goniewicz M, McRobbie H, Kimber C, Doig M, Kośmider L (2018) ‘Real-world’ compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure. Addiction 113:1874–1882

    Article  Google Scholar 

  5. Etter JF (2010) Electronic cigarettes: a survey of users. BMC Public Health 10:231

    Article  Google Scholar 

  6. Schripp T, Markewitz D, Uhde E, Salthammer T (2013) Does e-cigarette consumption cause passive vaping. Indoor Air 23:25–31

    Article  CAS  Google Scholar 

  7. Protano C, Avino P, Manigrasso M, Vivaldi V, Perna F, Valeriani F, Vitali M (2018) Environmental electronic vape exposure from four different generations of electronic cigarettes: airborne particulate matter levels. Int J Environ Res Public Health 15:2172

    Article  CAS  Google Scholar 

  8. Avino P, Scungio M, Stabile L, Cortellessa G, Buonanno G, Manigrasso M (2018) Second-hand aerosol from tobacco and electronic cigarettes: evaluation of the smoker emission rates and doses and lung cancer risk of passive smokers and vapers. Sci Total Environ 642:137–147

    Article  CAS  Google Scholar 

  9. Montharu J, Le Guellec S, Kittel B, Rabemampianina Y, Guillemain J, Gauthier F, Diot P, de Monte M (2010) Evaluation of lung tolerance of ethanol, propylene glycol, and sorbitan monooleate as solvents in medical aerosols. J Aerosol Med Pulm Drug Deliv 23:41–46

    Article  CAS  Google Scholar 

  10. Trehy ML, Ye W, Hadwiger ME, Moore TW, Allgire JF, Woodruff JT, Ahadi SS, Black JC, Westenberger BJ (2011) Analysis of electronic cigarette cartridges, refill solutions, and smoke for nicotine and nicotine related impurities. J Liq Chromatogr Relat Technol 34:1442–1458

    Article  CAS  Google Scholar 

  11. WHO (2014) Backgrounder on WHO report on regulation of e-cigarettes and similar products. 26 August 2014. Retrieved 2 June 2015

  12. Avino P, Capannesi G, Renzi L, Rosada A (2013) Instrumental neutron activation analysis and statistical approach for determining baseline values of essential and toxic elements in hairs of high school students. Ecotoxicol Environ Saf 92:206–214

    Article  CAS  Google Scholar 

  13. Campanella L, Crescentini G, Avino P, Moauro A (1998) Determination of macrominerals and trace elements in the alga Spirulina platensis. Analusis 26:210–214

    Article  CAS  Google Scholar 

  14. Currie LA (1968) Opportunities for innovation in neutron activation analysis. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  15. Bode P (2012) Opportunities for innovation in neutron activation analysis. J Radioanal Nucl Chem 291:275–280

    Article  CAS  Google Scholar 

  16. Dulka JJ, Risby T (1976) Ultratrace metals in some environmental and biological system. Anal Chem 48:640–653

    Article  Google Scholar 

  17. Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, Prokopowicz A, Jablonska-Czapla M, Rosik-Dulewska C, Havel C, Jacob P III, Benowitz N (2014) Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control 23:133–139

    Article  Google Scholar 

  18. Zagà V (2013) Il nuovo tabagismo La sigaretta elettronica. Il Salvagente 22 (in Italian)

  19. Avino P, Capannesi G, Rosada A (2011) Ultra-trace nutritional and toxicological elements in Rome and Florence drinking waters determined by Instrumental Neutron Activation Analysis. Microchem J 97:144–153

    Article  CAS  Google Scholar 

  20. Dautzenberg B (2013) Rapport et avis d’experts sur la e-cigarette. Office Français de Prévention de Tabagisme, Paris. http://www.ladocumentationfrancaise.fr/rapports-publics/134000328/index.shtml. Accessed May 2018

  21. Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P (2013) Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 8:e57987

    Article  CAS  Google Scholar 

  22. Perucchi M, Beretta O, Merlani G, Bouvier Gallacchi M (2014) La sigaretta elettronica. Come orientarsi. Swiss, February 2014; 14. https://www4.ti.ch/fileadmin/DSS/DSP/SPVS/PDF/Pubblicazioni/E-Cig_SPVS.pdf. Accessed June 2018

  23. Jensen RP, Luo W, Pankow JF, Strongin RM, Peyton DH (2015) Hidden formaldehyde in e-cigarette aerosols. N Engl J Med 372:392–394

    Article  CAS  Google Scholar 

  24. Farsalinos KE, Voudris V, Spyrou A, Poulas K (2017) E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions. Food Chem Toxicol 109:90–94

    Article  CAS  Google Scholar 

  25. Farsalinos KE, Yannovits N, Sarri T, Voudris V, Poulas K, Leischow S (2018) Carbonyl emissions from a novel heated tobacco product (IQOS): comparison with an e-cigarette and a tobacco cigarette. Addiction 113:2099–2106

    Article  Google Scholar 

  26. Manigrasso M, Buonanno G, Fuoco FC, Stabile L, Avino P (2015) Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ Pollut 196:257–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Avino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avino, P., Rosada, A. & Manigrasso, M. The inorganic fraction in e-liquids used in vapor products including e-cigarettes. J Radioanal Nucl Chem 322, 423–430 (2019). https://doi.org/10.1007/s10967-019-06762-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06762-9

Keywords

Navigation