Skip to main content
Log in

210Pb and 137Cs based techniques for the estimation of sediment chronologies and sediment rates in the Anzali Lagoon, Caspian Sea

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

137Cs and 210Pb based sediment chronology methods, along with an HPGe gamma-ray spectrometry system, were applied to estimating of sediment accumulative rates (SAR), sedimentation rate (SR) and sedimentation chronology in the Anzali Lagoon. Sedimentation chronology was calculated according to the 210Pbex based-models including; the constant rate of supply, constant initial concentration and 137Cs peak-technique. The SAR value were ranged from 0.12 g cm−2 year−1 in core-2 to 0.21 g cm−2 year−1 in core-3. The results showed that the average of SR and SAR values after 1986; interval were 22% and 54% more than between 1963 and 1986 intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Colman SM, Baucom PC, Bratton JF, Cronin TM, McGeehin JP, Willard D, Zimmerman AR, Vogt PR (2002) Radiocarbon dating, chronologic framework, and changes in accumulation rates of Holocene estuarine sediments from Chesapeake Bay. Quat Res 57(1):58–70

    CAS  Google Scholar 

  2. Tylmann W, Bonk A, Goslar T, Wulf S, Grosjean M (2016) Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: problems and implications. Quat Geochronol 32:1–10

    Google Scholar 

  3. Corcoran M, Sherif MI, Smalley C, Li A, Rockne KJ, Giesy JP, Sturchio NC (2018) Accumulation rates, focusing factors, and chronologies from depth profiles of 210Pb and 137Cs in sediments of the Laurentian Great Lakes. J Great Lakes Res 44(4):693–704

    CAS  Google Scholar 

  4. Turner L, Delorme L (1996) Assessment of 210 Pb data from Canadian lakes using the CIC and CRS models. Environ Geol 28(2):78–87

    CAS  Google Scholar 

  5. Drexler JZ, Fuller CC, Archfield S (2018) The approaching obsolescence of 137Cs dating of wetland soils in North America. Quat Sci Rev 199:83–96

    Google Scholar 

  6. Kumar A, Rout S, Chopra MK, Mishra D, Singhal R, Ravi P, Tripathi R (2014) Modeling of 137Cs migration in cores of marine sediments of Mumbai Harbor Bay. J Radioanal Nucl Chem 301(2):615–626

    CAS  Google Scholar 

  7. Durham R, Joshi S (1980) The 210Pb and 137Cs profiles in sediment cores from Lakes Matagami and Quevillon, northwest Quebec, Canada. Can J Earth Sci 17(12):1746–1750

    CAS  Google Scholar 

  8. Snow MS, Snyder DC, Clark SB, Kelley M, Delmore JE (2015) 137Cs activities and 135Cs/137Cs isotopic ratios from soils at Idaho National Laboratory: a case study for contaminant source attribution in the vicinity of nuclear facilities. Environ Sci Technol 49(5):2741–2748. https://doi.org/10.1021/es5058852

    Article  CAS  PubMed  Google Scholar 

  9. Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19(2):215–233

    CAS  Google Scholar 

  10. Matisoff G (2017) Activities and geochronology of (137)Cs in lake sediments resulting from sediment resuspension. J Environ Radioact 167:222–234. https://doi.org/10.1016/j.jenvrad.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  11. Whicker JJ, Whicker FW, Jacobi S (1994) 137Cs in sediments of Utah lakes and reservoirs: effects of elevation, sedimentation rate and fallout history. J Environ Radioact 23(3):265–283

    CAS  Google Scholar 

  12. He Q, Walling D, Owens P (1996) Interpreting the 137Cs profiles observed in several small lakes and reservoirs in southern England. Chem Geol 129(1):115–132

    CAS  Google Scholar 

  13. Albrecht A, Reiser R, Lück A, Stoll J-MA, Giger W (1998) Radiocesium dating of sediments from lakes and reservoirs of different hydrological regimes. Environ Sci Technol 32(13):1882–1887

    CAS  Google Scholar 

  14. Saxén R, Ilus E (2008) Transfer and behaviour of 137Cs in two Finnish lakes and their catchments. Sci Total Environ 394(2–3):349–360

    PubMed  Google Scholar 

  15. Ahn YS, Mizugaki S, Nakamura F, Nakamura Y (2006) Historical change in lake sedimentation in Lake Takkobu, Kushiro Mire, northern Japan over the last 300 years. Geomorphology 78(3–4):321–334

    Google Scholar 

  16. Mizugaki S, Nakamura F, Araya T (2006) Using dendrogeomorphology and 137Cs and 210Pb radiochronology to estimate recent changes in sedimentation rates in Kushiro Mire, Northern Japan, resulting from land use change and river channelization. CATENA 68(1):25–40

    Google Scholar 

  17. Mikelić IL, Oreščanin V, Škaro K (2017) Variation of sedimentation rate in the semi-enclosed bay determined by 137Cs distribution in sediment (Kaštela Bay, Croatia). J Environ Radioact 166:112–125

    Google Scholar 

  18. Schumm SA (1977) The fluvial system

  19. Xu J (2003) Sedimentation rates in the lower Yellow River over the past 2300 years as influenced by human activities and climate change. Hydrol Process 17(16):3359–3371

    Google Scholar 

  20. Jafari N (2009) Ecological integrity of wetland, their functions and sustainable use. J Ecol Nat Environ 1(3):045–054

    Google Scholar 

  21. Rafiei B, Ghomi FA, Ardebili L, Sadeghifar M, Sharifi SHK (2012) Distribution of metals (Cu, Zn, Pb, and Cd) in sediments of the Anzali Lagoon, north Iran. Soil Sediment Contam Int J 21(6):768–787

    CAS  Google Scholar 

  22. Chen J, Pekker T, Wilson C, Tapley B, Kostianoy A, Cretaux JF, Safarov E (2017) Long-term Caspian Sea level change. Geophys Res Lett 44(13):6993–7001

    Google Scholar 

  23. Wang J, Du J, Baskaran M, Zhang J (2016) Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers. J Geophys Res Oceans 121(1):224–239

    Google Scholar 

  24. Abbasi A, Mirekhtiary F (2013) Comparison of active and passive methods for radon exhalation from a high–exposure building material. Radiat Prot Dosim 157(4):570–574

    CAS  Google Scholar 

  25. Abbasi A (2013) Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat Prot Dosim 155(3):335–342

    CAS  Google Scholar 

  26. Başkaya H, Doğru M, Küçükönder A (2014) Determination of the 137Cs and 90Sr radioisotope activity concentrations found in digestive organs of sheep fed with different feeds. J Environ Radioact 134:61–65

    PubMed  Google Scholar 

  27. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593

    CAS  Google Scholar 

  28. Lépy M, Pearce A, Sima O (2015) Uncertainties in gamma-ray spectrometry. Metrologia 52(3):S123

    Google Scholar 

  29. Wright S, Howard B, Strand P, Nylén T, Sickel M (1999) Prediction of 137Cs deposition from atmospheric nuclear weapons tests within the Arctic. Environ Pollut 104(1):131–143

    CAS  Google Scholar 

  30. Smith J, Clarke R, Saxén R (2000) Time-dependent behaviour of radiocaesium: a new method to compare the mobility of weapons test and Chernobyl derived fallout. J Environ Radioact 49(1):65–83

    CAS  Google Scholar 

  31. Yan P, Shi P, Gao S, Chen L, Zhang X, Bai L (2002) 137Cs dating of lacustrine sediments and human impacts on Dalian Lake, Qinghai Province, China. CATENA 47(2):91–99

    CAS  Google Scholar 

  32. Almgren S, Isaksson M (2006) Vertical migration studies of 137Cs from nuclear weapons fallout and the Chernobyl accident. J Environ Radioact 91(1–2):90–102

    CAS  PubMed  Google Scholar 

  33. Tsabaris C, Patiris D, Fillis-Tsirakis E, Kapsimalis V, Pilakouta M, Pappa F, Vlastou R (2015) Vertical distribution of 137Cs activity concentration in marine sediments at Amvrakikos Gulf, western of Greece. J Environ Radioact 144:1–8

    CAS  PubMed  Google Scholar 

  34. Smith JT, Tagami K, Uchida S (2017) Time trends in radiocaesium in the Japanese diet following nuclear weapons testing and Chernobyl: implications for long term contamination post-Fukushima. Sci Total Environ 601:1466–1475

    PubMed  Google Scholar 

  35. Sanchez-Cabeza J, Ruiz-Fernández A (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200

    CAS  Google Scholar 

  36. Oldfield F, Appleby P (1984) A combined radiometric and mineral magnetic approach to recent geochronology in lakes affected by catchment disturbance and sediment redistribution. Chem Geol 44(1–3):67–83

    CAS  Google Scholar 

  37. Golosov VN, Walling DE, Konoplev AV, Ivanov MM, Sharifullin AG (2018) Application of bomb- and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout. J Environ Radioact 186:78–89. https://doi.org/10.1016/j.jenvrad.2017.06.022

    Article  CAS  PubMed  Google Scholar 

  38. Kumar A, Hage-Hassan J, Baskaran M, Miller C, Selegean J, Creech C (2016) Multiple sediment cores from reservoirs are needed to reconstruct recent watershed changes from stable isotopes (δ13C and δ15 N) and C/N ratios: case studies from the mid-western United States. J Paleolimnol 56(1):15–31

    Google Scholar 

  39. Kumar A, Hage-Hassan J, Baskaran M, Miller C, Selegean J, Creech C (2016) Multiple sediment cores from reservoirs are needed to reconstruct recent watershed changes from stable isotopes (δ13C and δ15 N) and C/N ratios: case studies from the mid-western United States. J Paleolimnol 56(1):15–31

    Google Scholar 

  40. Appleby P, Oldfield F, Thompson R, Huttunen P, Tolonen K (1979) 210Pb dating of annually laminated lake sediments from Finland. Nature 280(5717):53

    CAS  Google Scholar 

  41. Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39(3):285–304

    CAS  Google Scholar 

  42. Kumar A, Rout S, Karpe R, Mishra MK, Narayanan U, Singhal RK, Ravi PM, Tripathi RM (2015) Inventory, fluxes and residence times from the depth profiles of naturally occurring 210 Pb in marine sediments of Mumbai Harbor Bay. Environ Earth Sci 73(8):4019–4031

    CAS  Google Scholar 

  43. Kumar A, Rout S, Singhal R, Ravi P, Tripathi R (2016) Sediment accumulation and bio-diffusion mixing rates derived from excess 210Pb and 137Cs profiles in sediment cores of Mumbai Harbor Bay. J Coast Conserv 20(4):289–297

    Google Scholar 

  44. Zare MR, Kamali M, Fallahi Kapourchali M, Bagheri H, Khoram Bagheri M, Abedini A, Pakzad HR (2016) Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy. Environ Sci Pollut Res Int 23(4):3285–3299. https://doi.org/10.1007/s11356-015-5473-8

    Article  CAS  PubMed  Google Scholar 

  45. Pulley S, Foster IDL, Collins AL, Zhang Y, Evans J (2018) An analysis of potential controls on long-term 137Cs accumulation in the sediments of UK lakes. J Paleolimnol 60(1):1–30. https://doi.org/10.1007/s10933-017-0016-6

    Article  Google Scholar 

  46. Ahn YS (2018) Recent changes in sedimentation rate in three lakes of Ishikari Wetland, Northern Japan determined by 210Pb dating. Water Resour 45(5):795–802

    CAS  Google Scholar 

  47. Li Z, Xu X, Zhang Y, Wang K, Zeng P (2019) Reconstructing recent changes in sediment yields from a typical karst watershed in southwest China. Agric Ecosyst Environ 269:62–70

    Google Scholar 

  48. Mejjad N, Laissaoui A, El-Hammoumi O, Fekri A, Amsil H, El-Yahyaoui A, Benkdad A (2018) Geochemical, radiometric, and environmental approaches for the assessment of the intensity and chronology of metal contamination in the sediment cores from Oualidia lagoon (Morocco). Environ Sci and Pollut Res 25(23):22872–22888

    CAS  PubMed  Google Scholar 

  49. Haliuc A, Feurdean A, Mîndrescu M, Frantiuc A, Hutchinson SM (2018) Impacts of forest loss in the eastern Carpathian Mountains: linking remote sensing and sediment changes in a mid-altitude catchment (Red Lake, Romania). Reg Environ Change 19(2):461–475

    Google Scholar 

  50. Bao K, Wang G, Pratte S, Mackenzie L, Klamt A-M (2018) Historical variation in the distribution of trace and major elements in a Poor Fen of Fenghuang Mountain, NE China. Geochem Int 56(10):1003–1015

    CAS  Google Scholar 

  51. Moir KE, Hickey MBC, Leavitt PR, Ridal JJ, Cumming BF (2018) Paleolimnological proxies reveal continued eutrophication issues in the St. Lawrence River area of concern. J Great Lakes Res 44(3):357–366

    CAS  Google Scholar 

  52. Jweda J, Baskaran M (2011) Interconnected riverine–lacustrine systems as sedimentary repositories: Case study in southeast Michigan using 210Pb and 137Cs-based sediment accumulation and mixing models. J Great Lakes Res 37(3):432–446

    CAS  Google Scholar 

  53. Lan B, Zhang D, Yang Y (2018) Lacustrine sediment chronology defined by 137Cs, 210Pb and 14C and the hydrological evolution of Lake Ailike during 1901–2013, northern Xinjiang, China. CATENA 161:104–112

    CAS  Google Scholar 

  54. Sayer CD, Davidson TA, Rawcliffe R, Langdon PG, Leavitt PR, Cockerton G, Rose NL, Croft T (2016) Consequences of fish kills for long-term trophic structure in shallow lakes: implications for theory and restoration. Ecosystems 19(7):1289–1309

    CAS  Google Scholar 

  55. Marzecová A, Avi E, Mikomägi A, Koff T (2017) Ecological response of a shallow boreal lake to biomanipulation and catchment land-use: integrating paleolimnological evidence with information from limnological surveys and maps. J Paleolimnol 57(1):1–18

    Google Scholar 

  56. Baskaran M, Miller CJ, Kumar A, Andersen E, Hui J, Selegean JP, Creech CT, Barkach J (2015) Sediment accumulation rates and sediment dynamics using five different methods in a well-constrained impoundment: case study from Union Lake, Michigan. J Great Lakes Res 41(2):607–617. https://doi.org/10.1016/j.jglr.2015.03.013

    Article  Google Scholar 

  57. Reyss J-L, Mangeret A, Courbet C, Bassot S, Alcalde G, Thouvenot A, Guillevic J (2016) Estimation of sedimentation rates based on the excess of radium 228 in granitic reservoir sediments. J Environ Radioact 162:8–13

    PubMed  Google Scholar 

  58. Golosov V, Ivanova N, Gusarov A, Sharifullin A (2017) Assessment of the trend of degradation of arable soils on the basis of data on the rate of stratozem development obtained with the use of 137Cs as a chronomarker. Eurasian Soil Sci 50(10):1195–1208

    CAS  Google Scholar 

  59. Sert I, Ozel FE, Yaprak G, Eftelioglu M (2015) Determination of the latest sediment accumulation rates and pattern by performing 210Pb models and 137Cs technique in the Lake Bafa, Mugla, Turkey. J Radioanal Nucl Chem 307(1):313–323. https://doi.org/10.1007/s10967-015-4234-y

    Article  CAS  Google Scholar 

  60. Eleftheriou G, Tsabaris C, Papageorgiou DK, Patiris DL, Androulakaki EG, Pappa FK (2018) Radiometric dating of sediment cores from aquatic environments of north-east Mediterranean. J Radioanal Nucl Chem 316(2):655–671

    CAS  Google Scholar 

  61. Pappa FK, Tsabaris C, Patiris DL, Androulakaki EG, Betsou GC, Michalopoulou V, Kokkoris M, Vlastou R (2018) Historical trends and assessment of radionuclides and heavy metals in sediments near an abandoned mine, Lavrio, Greece. Environ Sci Pollut Res 25(30):30084–30100

    CAS  Google Scholar 

  62. Zaborska A, Winogradow A, Pempkowiak J (2014) Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. J Environ Radioact 127:11–25

    CAS  PubMed  Google Scholar 

  63. Vavdare KS, Sedghi H, Sarraf A (2019) Determination of Sedimentation Rate in Anzali Lagoon of Northern Iran Using Cs-137 Tracer Technique. Appl Ecol Environ Res 17(1):1337–1347

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Maritime Patrol of the study area that contributed to the sampling of sediment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A. 210Pb and 137Cs based techniques for the estimation of sediment chronologies and sediment rates in the Anzali Lagoon, Caspian Sea. J Radioanal Nucl Chem 322, 319–330 (2019). https://doi.org/10.1007/s10967-019-06739-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06739-8

Keywords

Navigation