Measurement and covariance analysis of \( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross section

Abstract

The \( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross sections were measured at the neutron energies of 10.49 ± 0.29, 14.46 ± 0.26, 18.36 ± 0.24 MeV and 15.03 ± 0.003 MeV. For the first three energies, \( ^{7} {\text{Li}}\left( {{\text{p}},{\text{n}}} \right) \) reaction as a neutron source at the BARC-TIFR Pelletron accelerator facility was used. For the latter energy, \( ^{3} {\text{H}}\left( {{\text{d}},{\text{n}}} \right) \) neutron source using the PURNIMA neutron generator facility was used. The experiments were carried out using the activation method and off-line \( \upgamma \)-ray spectrometric technique. Covariance information of various attributes of cross section was propagated to obtain the covariance matrix for the reaction cross sections. The experimental resuts obtained with reference to the two different neutron sources are then compared with the values of evaluated nuclear data files such as ENDF/B-VIII.0, JENDL 4.0, JEFF-3.2, ROSFOND-2010, TENDL-2017 and the theoretical values from TALYS-1.9 code.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Allen TR, Crawford DC (2007) Sci Tech Nucl Install, Article ID 97486

  2. 2.

    Reactors Accelerator Driven Systems Knowledge Base (2002) Thorium fuel utilization: options and trends. IAEA-TECDOC-1319

  3. 3.

    Sinha RK, Kakodkar A (2006) Nucl Eng Des 236:683–700

    CAS  Article  Google Scholar 

  4. 4.

    Carmati F, Klapisch R, Revol JP, Roche C, Rubio JA, Rubia C (1993) CERN/AT/93-47

  5. 5.

    Rubbia C, Roche C, Rubio JA, Carminati F, Kadi Y, Mandrillon P, Revol JP, Buono S, Klapisch R, Fiétier N, Gelès C (1995) CERN-AT-95-44-ET

  6. 6.

    Bowman CD (1998) Annu Rev Nucl Part Sci 48:505–556

    CAS  Article  Google Scholar 

  7. 7.

    BARC-TIFR Pelletron LINAC Facility. http://www.tifr.res.in/pell/pelletron/index.php

  8. 8.

    PURNIMA Neutron Generator. The plutonium reactor for neutronic investigations in multiplying assemblies. https://www.nti.org/learn/facilities/861/

  9. 9.

    Shivashankar BS, Ganesan S, Naik H, Suryanarayana SV, Nair NS, Prasad KM (2015) Nucl Sci Eng 4:423–433

    Article  Google Scholar 

  10. 10.

    Yerraguntla SS, Naik H, Karantha MP, Ganesan S, Suryanarayana SV, Badwar S (2017) J Radioanal Nucl Chem 314:457–465

    CAS  Article  Google Scholar 

  11. 11.

    Meghna K, Naik H, Punchithaya S, Prasad KM, Yeraguntla SS, Suryanarayana SV, Ganesan S, Vansola V, Makhwana R (2018) J Radioanal Nucl Chem 318:1893–1900

    Article  Google Scholar 

  12. 12.

    Ziegler JF (2016) SRIM-2013. Pergamon, New York, p 2013

    Google Scholar 

  13. 13.

    Poppe CH, Anderson JD, Davis JC, Grimes SM, Wong C (1976) Phys Rev C 14:438

    CAS  Article  Google Scholar 

  14. 14.

    Luo J, Du L, Zhao J (2013) Beam interactions with materials and atoms. Nucl Instrum Methods Phys Res B 298:61–65

    CAS  Article  Google Scholar 

  15. 15.

    Meghna K, Naik H, Yeraguntla SS, Punchithaya S, Dhanu LS, Prasad KM, Rajeev K, Kapil D, Devesh R, Tarun P, Saroj B, Suryanarayana SV, Ganesan S, Umasankari K (2019) Tech report no 5. https://www.researchgate.net/publication/332876423_Detailed_covariance_analysis_in_the_measurement_of_cross_sections_for_the_232Thn_2n231Th_reaction_at_the_effective_neutron_energies_of_1049029_MeV_1446026_MeV_1836024_MeV_and_15030003_MeV_using_the_7Li

  16. 16.

    NuDat 2.7 (2016) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2

  17. 17.

    Vidmar T (2005) EFFTRAN—a Monto Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res A 550:603

    CAS  Article  Google Scholar 

  18. 18.

    Smith DL (1987) Accelerators, spectrometers, detectors and associated equipment. Nucl Instrum Methods Phys Res A 257:365–370

    Article  Google Scholar 

  19. 19.

    Karkera M, Naik H, Yeraguntla SS, Vansola V, Suryanarayana SV, Prasad KM, Ganesan S, Punchithaya S (2018) RG tech report no 4. https://www.researchgate.net/publication/329527685_Detailed_data_sets_related_to_the_covariance_analysis_of_the_measurement_of_cross_section_data_of_232Thn_2n231Th_reaction

  20. 20.

    Smith DL, Plompen AJ, Semkova V (2005) Organisation for Economic Co-operation and Development-Nuclear Energy Agency (NEA/WPEC-19, ISBN 92-64-01070-X)

  21. 21.

    Nowotny R (2018) IAEA Rep. IAEA-NDS 195. https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm

  22. 22.

    Millsap DW, Landsberger S (2015) Appl Radiat Isot 97:21–23

    CAS  Article  Google Scholar 

  23. 23.

    Sonzogni A (2008) National nuclear data centre. Brookhaven National Laboratory, pp 103–118. https://www.nndc.bnl.gov/

  24. 24.

    Zsolnay EM, Capote NR, Nolthenius HJ, Trkov A (2014) International reactor dosimetry and fusion file (IRDFF v1.05). https://www-nds.iaea.org/IRDFF/

  25. 25.

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin AI, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest RA (2014) Nucl Data Sheets 120:272–276

    CAS  Article  Google Scholar 

  26. 26.

    Filatenkov AA (2016) USSR report to INDC, CCP-0460

  27. 27.

    Reyhancan IA (2011) Ann Nucl Energy 38:2359–2362

    CAS  Article  Google Scholar 

  28. 28.

    Karamanis D, Andriamonje S, Assimakopoulos PA, Doukellis G, Karademos DA, Karydas A, Kokkorir M, Kossionides S, Nicolis NG, Papachristodoulou C, Papadopoulos CT (2003) Accelerators, spectrometers, detectors and associated equipment. Nucl Instrum Methods Phys Res A 505:381–384

    CAS  Article  Google Scholar 

  29. 29.

    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H (1993) JAERI1329

  30. 30.

    Chatani H, Kimura I (1992) Ann Nucl Energy 19:425–429

    CAS  Article  Google Scholar 

  31. 31.

    Chatani H, Kimura I (1991) JAERI-M-91-032

  32. 32.

    Raics P, Nagy S, Daroczy S, Kornilov NV (1990) International Atomic Energy Agency

  33. 33.

    Raics P, Daroczy S, Csikai J, Kornilov NV, Baryba VY, Salnikov OA (1985) Phys Rev C 32:87

    CAS  Article  Google Scholar 

  34. 34.

    Chatani H (1983) Nucl Instrum Methods Phys Res 205:501–504

    CAS  Article  Google Scholar 

  35. 35.

    Karius H, Ackermann A, Scobel W (1979) J Phys G (Nucl Phys) 5:715

    CAS  Article  Google Scholar 

  36. 36.

    Kobayashi K, Hashimoto T, Kimura I (1971) J Nucl Sci Technol 8:492–497

    CAS  Article  Google Scholar 

  37. 37.

    Prestwood RJ, Bayhurst BP (1961) Phys Rev 121:1438

    CAS  Article  Google Scholar 

  38. 38.

    Perkin JL, Coleman RF (1961) J Nucl Energy Parts A/B React Sci Technol 14:69–75

    CAS  Article  Google Scholar 

  39. 39.

    Butler JP, Santry DC (1961) Can J Chem 39(3):689–696

    CAS  Article  Google Scholar 

  40. 40.

    Tewes HA, Caretto AA, Miller AE, Nethaway DR (1960) California Univ Livermore (USA), Lawrence Livermore Lab

  41. 41.

    Zysin YA, Kovrizhnykh AA, Lbov AA, Sel’chenkov LI (1961) At Energy 8:310

    Article  Google Scholar 

  42. 42.

    Phillips JA (1958) J Nucl Energy 7:215–219

    CAS  Google Scholar 

  43. 43.

    Naik H, Prajapati PM, Surayanarayana SV, Jagadeesan KC, Thakare SV, Raj D, Mulik VK, Sivashankar BS, Nayak BK, Sharma SC, Mukherjee S (2011) Eur Phys J A 47:51

    Article  Google Scholar 

  44. 44.

    Prajapati PM, Naik H, Suryanarayana SV, Mukherjee S, Jagadeesan KC, Sharma SC, Thakre SV, Rasheed KK, Ganesan S, Goswami A (2012) Eur Phys J A 48:35

    Article  Google Scholar 

  45. 45.

    Crasta R, Naik H, Suryanarayana SV, Shivashankar BS, Mulik VK, Prajapati PM, Sanjeev G, Sharma SC, Bhagwat PV, Mohanty AK, Ganesan S, Goswami A (2012) Ann Nucl Energy 47:160–165

    CAS  Article  Google Scholar 

  46. 46.

    Mukerji S, Naik H, Suryanarayana SV, Chachara S, Shivashankar BS, Mulik V, Crasta R, Samanta S, Nayak BK, Saxena A, Sharma SC (2012) Pramana 79:249–262

    CAS  Article  Google Scholar 

  47. 47.

    Naik H, Surayanarayana SV, Bishnoi S, Patel T, Sinha A, Goswami A (2015) J Radioanal Nucl Chem 303:2497–2504

    CAS  Google Scholar 

  48. 48.

    Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R (2011) ENDF/B-VIII. 0 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112:2887–2996

    CAS  Article  Google Scholar 

  49. 49.

    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohasawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48:1–30

    CAS  Article  Google Scholar 

  50. 50.

    Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellett MA, Mills RW, Nordborg CM, Pescarini Rugama Y, Rullhusen P (2011) Status of the JEFF nuclear data library. J Korean Phys Soc 59(2):1057–1062

    Article  Google Scholar 

  51. 51.

    Zabrodskaya SV, Ignatyuk AV, Koscheev VN (2007) ROSFOND-Rossiyskaya Natsionalnaya Biblioteka Nejtronnykh Dannykh, In: VANT, Nuclear Constants 1–2

  52. 52.

    Rochman D, Koning AJ, Sublet JC, Fleming M, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, Goriely S, Van Der Marck SC (2017) The TENDL library: hope, reality and future. In: EPJ web of conferences. EDP Sciences, p 146

  53. 53.

    Koning AJ, Hilaire S, Goriely S (2015) TALYS-1.9, A nuclear reaction program. http://www.talys.eu/download-talys

Download references

Acknowledgements

The research work was supported by DAE-BRNS project (Sanction No. 36(6)/14/52/2014-BRNS/2708). The authors would like to thank the staff of BARC-TIFR Pelletron facility and PURNIMA neutron generator facility for their kind co-operation in providing the proton beam to carry out the experiment. One of the authors, Meghna Karkera gratefully acknowledges the Department of Atomic Energy of India for the award of Senior Research Fellowship to carry out the study. Meghna Karkera would also like to thank Dr. Mahesha, MIT, Manipal and colleague Savita for their timely guidance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haladhara Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karkera, M., Yerraguntla, S.S., Punchithaya, S. et al. Measurement and covariance analysis of \( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross section. J Radioanal Nucl Chem 322, 817–825 (2019). https://doi.org/10.1007/s10967-019-06722-3

Download citation

Keywords

  • \( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross section
  • Activation and off-line \( \upgamma \)-ray spectrometric technique
  • Covariance analysis