Advertisement

Measurement and covariance analysis of \( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross section

  • Meghna Karkera
  • Santhi Sheela Yerraguntla
  • Sripathi Punchithaya
  • Saraswatula Venkata Suryanarayana
  • Manjunatha Prasad Karantha
  • Haladhara NaikEmail author
  • Srinivasan Ganesan
  • Laxman Singh Dhanu
  • Rajeev Kumar
  • Kapil Deo
  • Devesh Raj
  • Tarun Patel
  • Saroj Bishnoi
  • Umasankari Kannan
Article
  • 32 Downloads

Abstract

The \( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross sections were measured at the neutron energies of 10.49 ± 0.29, 14.46 ± 0.26, 18.36 ± 0.24 MeV and 15.03 ± 0.003 MeV. For the first three energies, \( ^{7} {\text{Li}}\left( {{\text{p}},{\text{n}}} \right) \) reaction as a neutron source at the BARC-TIFR Pelletron accelerator facility was used. For the latter energy, \( ^{3} {\text{H}}\left( {{\text{d}},{\text{n}}} \right) \) neutron source using the PURNIMA neutron generator facility was used. The experiments were carried out using the activation method and off-line \( \upgamma \)-ray spectrometric technique. Covariance information of various attributes of cross section was propagated to obtain the covariance matrix for the reaction cross sections. The experimental resuts obtained with reference to the two different neutron sources are then compared with the values of evaluated nuclear data files such as ENDF/B-VIII.0, JENDL 4.0, JEFF-3.2, ROSFOND-2010, TENDL-2017 and the theoretical values from TALYS-1.9 code.

Keywords

\( ^{232} {\text{Th}}\left( {{\text{n}},2{\text{n}}} \right)^{231} {\text{Th}} \) reaction cross section Activation and off-line \( \upgamma \)-ray spectrometric technique Covariance analysis 

Notes

Acknowledgements

The research work was supported by DAE-BRNS project (Sanction No. 36(6)/14/52/2014-BRNS/2708). The authors would like to thank the staff of BARC-TIFR Pelletron facility and PURNIMA neutron generator facility for their kind co-operation in providing the proton beam to carry out the experiment. One of the authors, Meghna Karkera gratefully acknowledges the Department of Atomic Energy of India for the award of Senior Research Fellowship to carry out the study. Meghna Karkera would also like to thank Dr. Mahesha, MIT, Manipal and colleague Savita for their timely guidance.

References

  1. 1.
    Allen TR, Crawford DC (2007) Sci Tech Nucl Install, Article ID 97486Google Scholar
  2. 2.
    Reactors Accelerator Driven Systems Knowledge Base (2002) Thorium fuel utilization: options and trends. IAEA-TECDOC-1319Google Scholar
  3. 3.
    Sinha RK, Kakodkar A (2006) Nucl Eng Des 236:683–700CrossRefGoogle Scholar
  4. 4.
    Carmati F, Klapisch R, Revol JP, Roche C, Rubio JA, Rubia C (1993) CERN/AT/93-47Google Scholar
  5. 5.
    Rubbia C, Roche C, Rubio JA, Carminati F, Kadi Y, Mandrillon P, Revol JP, Buono S, Klapisch R, Fiétier N, Gelès C (1995) CERN-AT-95-44-ETGoogle Scholar
  6. 6.
    Bowman CD (1998) Annu Rev Nucl Part Sci 48:505–556CrossRefGoogle Scholar
  7. 7.
    BARC-TIFR Pelletron LINAC Facility. http://www.tifr.res.in/pell/pelletron/index.php
  8. 8.
    PURNIMA Neutron Generator. The plutonium reactor for neutronic investigations in multiplying assemblies. https://www.nti.org/learn/facilities/861/
  9. 9.
    Shivashankar BS, Ganesan S, Naik H, Suryanarayana SV, Nair NS, Prasad KM (2015) Nucl Sci Eng 4:423–433CrossRefGoogle Scholar
  10. 10.
    Yerraguntla SS, Naik H, Karantha MP, Ganesan S, Suryanarayana SV, Badwar S (2017) J Radioanal Nucl Chem 314:457–465CrossRefGoogle Scholar
  11. 11.
    Meghna K, Naik H, Punchithaya S, Prasad KM, Yeraguntla SS, Suryanarayana SV, Ganesan S, Vansola V, Makhwana R (2018) J Radioanal Nucl Chem 318:1893–1900CrossRefGoogle Scholar
  12. 12.
    Ziegler JF (2016) SRIM-2013. Pergamon, New York, p 2013Google Scholar
  13. 13.
    Poppe CH, Anderson JD, Davis JC, Grimes SM, Wong C (1976) Phys Rev C 14:438CrossRefGoogle Scholar
  14. 14.
    Luo J, Du L, Zhao J (2013) Beam interactions with materials and atoms. Nucl Instrum Methods Phys Res B 298:61–65CrossRefGoogle Scholar
  15. 15.
    Meghna K, Naik H, Yeraguntla SS, Punchithaya S, Dhanu LS, Prasad KM, Rajeev K, Kapil D, Devesh R, Tarun P, Saroj B, Suryanarayana SV, Ganesan S, Umasankari K (2019) Tech report no 5. https://www.researchgate.net/publication/332876423_Detailed_covariance_analysis_in_the_measurement_of_cross_sections_for_the_232Thn_2n231Th_reaction_at_the_effective_neutron_energies_of_1049029_MeV_1446026_MeV_1836024_MeV_and_15030003_MeV_using_the_7Li
  16. 16.
    NuDat 2.7 (2016) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2
  17. 17.
    Vidmar T (2005) EFFTRAN—a Monto Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res A 550:603CrossRefGoogle Scholar
  18. 18.
    Smith DL (1987) Accelerators, spectrometers, detectors and associated equipment. Nucl Instrum Methods Phys Res A 257:365–370CrossRefGoogle Scholar
  19. 19.
    Karkera M, Naik H, Yeraguntla SS, Vansola V, Suryanarayana SV, Prasad KM, Ganesan S, Punchithaya S (2018) RG tech report no 4. https://www.researchgate.net/publication/329527685_Detailed_data_sets_related_to_the_covariance_analysis_of_the_measurement_of_cross_section_data_of_232Thn_2n231Th_reaction
  20. 20.
    Smith DL, Plompen AJ, Semkova V (2005) Organisation for Economic Co-operation and Development-Nuclear Energy Agency (NEA/WPEC-19, ISBN 92-64-01070-X)Google Scholar
  21. 21.
  22. 22.
    Millsap DW, Landsberger S (2015) Appl Radiat Isot 97:21–23CrossRefGoogle Scholar
  23. 23.
    Sonzogni A (2008) National nuclear data centre. Brookhaven National Laboratory, pp 103–118. https://www.nndc.bnl.gov/
  24. 24.
    Zsolnay EM, Capote NR, Nolthenius HJ, Trkov A (2014) International reactor dosimetry and fusion file (IRDFF v1.05). https://www-nds.iaea.org/IRDFF/
  25. 25.
    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin AI, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest RA (2014) Nucl Data Sheets 120:272–276CrossRefGoogle Scholar
  26. 26.
    Filatenkov AA (2016) USSR report to INDC, CCP-0460Google Scholar
  27. 27.
    Reyhancan IA (2011) Ann Nucl Energy 38:2359–2362CrossRefGoogle Scholar
  28. 28.
    Karamanis D, Andriamonje S, Assimakopoulos PA, Doukellis G, Karademos DA, Karydas A, Kokkorir M, Kossionides S, Nicolis NG, Papachristodoulou C, Papadopoulos CT (2003) Accelerators, spectrometers, detectors and associated equipment. Nucl Instrum Methods Phys Res A 505:381–384CrossRefGoogle Scholar
  29. 29.
    Konno C, Ikeda Y, Oishi K, Kawade K, Yamamoto H, Maekawa H (1993) JAERI1329Google Scholar
  30. 30.
    Chatani H, Kimura I (1992) Ann Nucl Energy 19:425–429CrossRefGoogle Scholar
  31. 31.
    Chatani H, Kimura I (1991) JAERI-M-91-032Google Scholar
  32. 32.
    Raics P, Nagy S, Daroczy S, Kornilov NV (1990) International Atomic Energy AgencyGoogle Scholar
  33. 33.
    Raics P, Daroczy S, Csikai J, Kornilov NV, Baryba VY, Salnikov OA (1985) Phys Rev C 32:87CrossRefGoogle Scholar
  34. 34.
    Chatani H (1983) Nucl Instrum Methods Phys Res 205:501–504CrossRefGoogle Scholar
  35. 35.
    Karius H, Ackermann A, Scobel W (1979) J Phys G (Nucl Phys) 5:715CrossRefGoogle Scholar
  36. 36.
    Kobayashi K, Hashimoto T, Kimura I (1971) J Nucl Sci Technol 8:492–497CrossRefGoogle Scholar
  37. 37.
    Prestwood RJ, Bayhurst BP (1961) Phys Rev 121:1438CrossRefGoogle Scholar
  38. 38.
    Perkin JL, Coleman RF (1961) J Nucl Energy Parts A/B React Sci Technol 14:69–75CrossRefGoogle Scholar
  39. 39.
    Butler JP, Santry DC (1961) Can J Chem 39(3):689–696CrossRefGoogle Scholar
  40. 40.
    Tewes HA, Caretto AA, Miller AE, Nethaway DR (1960) California Univ Livermore (USA), Lawrence Livermore LabGoogle Scholar
  41. 41.
    Zysin YA, Kovrizhnykh AA, Lbov AA, Sel’chenkov LI (1961) At Energy 8:310CrossRefGoogle Scholar
  42. 42.
    Phillips JA (1958) J Nucl Energy 7:215–219Google Scholar
  43. 43.
    Naik H, Prajapati PM, Surayanarayana SV, Jagadeesan KC, Thakare SV, Raj D, Mulik VK, Sivashankar BS, Nayak BK, Sharma SC, Mukherjee S (2011) Eur Phys J A 47:51CrossRefGoogle Scholar
  44. 44.
    Prajapati PM, Naik H, Suryanarayana SV, Mukherjee S, Jagadeesan KC, Sharma SC, Thakre SV, Rasheed KK, Ganesan S, Goswami A (2012) Eur Phys J A 48:35CrossRefGoogle Scholar
  45. 45.
    Crasta R, Naik H, Suryanarayana SV, Shivashankar BS, Mulik VK, Prajapati PM, Sanjeev G, Sharma SC, Bhagwat PV, Mohanty AK, Ganesan S, Goswami A (2012) Ann Nucl Energy 47:160–165CrossRefGoogle Scholar
  46. 46.
    Mukerji S, Naik H, Suryanarayana SV, Chachara S, Shivashankar BS, Mulik V, Crasta R, Samanta S, Nayak BK, Saxena A, Sharma SC (2012) Pramana 79:249–262CrossRefGoogle Scholar
  47. 47.
    Naik H, Surayanarayana SV, Bishnoi S, Patel T, Sinha A, Goswami A (2015) J Radioanal Nucl Chem 303:2497–2504Google Scholar
  48. 48.
    Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R (2011) ENDF/B-VIII. 0 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112:2887–2996CrossRefGoogle Scholar
  49. 49.
    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohasawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48:1–30CrossRefGoogle Scholar
  50. 50.
    Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellett MA, Mills RW, Nordborg CM, Pescarini Rugama Y, Rullhusen P (2011) Status of the JEFF nuclear data library. J Korean Phys Soc 59(2):1057–1062CrossRefGoogle Scholar
  51. 51.
    Zabrodskaya SV, Ignatyuk AV, Koscheev VN (2007) ROSFOND-Rossiyskaya Natsionalnaya Biblioteka Nejtronnykh Dannykh, In: VANT, Nuclear Constants 1–2Google Scholar
  52. 52.
    Rochman D, Koning AJ, Sublet JC, Fleming M, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, Goriely S, Van Der Marck SC (2017) The TENDL library: hope, reality and future. In: EPJ web of conferences. EDP Sciences, p 146Google Scholar
  53. 53.
    Koning AJ, Hilaire S, Goriely S (2015) TALYS-1.9, A nuclear reaction program. http://www.talys.eu/download-talys

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Meghna Karkera
    • 1
  • Santhi Sheela Yerraguntla
    • 2
  • Sripathi Punchithaya
    • 3
    • 4
  • Saraswatula Venkata Suryanarayana
    • 5
  • Manjunatha Prasad Karantha
    • 1
    • 6
  • Haladhara Naik
    • 7
    Email author
  • Srinivasan Ganesan
    • 8
  • Laxman Singh Dhanu
    • 5
  • Rajeev Kumar
    • 9
  • Kapil Deo
    • 10
  • Devesh Raj
    • 9
  • Tarun Patel
    • 11
  • Saroj Bishnoi
    • 11
  • Umasankari Kannan
    • 9
  1. 1.Department of Data ScienceManipal Academy of Higher EducationManipalIndia
  2. 2.Department of MACSNational Institute of Technology KarnatakaSurathkalIndia
  3. 3.Department of PhysicsMITManipalIndia
  4. 4.NIEMysuruIndia
  5. 5.Nuclear Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  6. 6.CARAMSManipal Academy of Higher EducationManipalIndia
  7. 7.Formerly in Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  8. 8.Former Raja Ramanna Fellow of the DAEBhabha Atomic Research CentreMumbaiIndia
  9. 9.Reactor Physics Design DivisionBhabha Atomic Research CenterMumbaiIndia
  10. 10.Safety Studies SectionBhabha Atomic Research CentreMumbaiIndia
  11. 11.Technical Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations