Skip to main content
Log in

Mössbauer and photocatalytic studies of CaFe2O4 nanoparticle-containing aluminosilicate prepared from domestic waste simulated slag

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The relationship between local structure and visible-light activated photocatalytic effect of simulated domestic waste slag glass–ceramics (R-NaWSFe) was investigated. The largest pseudo-first-order rate constant of 9.75 × 10−3 min−1 was estimated for methylene blue decomposition test under the visible-light irradiation using R-NaWSFe with additional 30 mass% of Fe2O3 heat-treated at 900 °C for 100 min. The reason for the high photoactivity of this sample was mainly due to nanoparticles of CaFe2O4 and α-Fe2O3 confirmed by the Mössbauer spectrum measured at 77 K. It is concluded that the nanoparticles of magnetic components in silica are essential for exhibiting visible-light activated catalytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. OECD (2010) Municipal waste. In: OECD Factbook 2010: economic, environmental and social statistics. OECD Publishing, Paris. https://doi.org/10.1787/factbook-2010-en

  2. OECD (2016) Municipal waste. In: OECD Factbook 2015–2016: economic, environmental and social statistics. OECD Publishing, Paris. https://doi.org/10.1787/factbook-2015-en

  3. Annual Report on the Environment (2018) The Sound Material-Cycle Society and Biodiversity in Japan. http://www.env.go.jp/en/wpaper/2018/pdf/07.pdf. Accessed 1 July 2019

  4. Kubuki S, Kawakami N, Kamikawa T, Fukagawa M, Nishizumi T, Nishida T, Homonnay Z, Kuzmann E (2005) Corelationship between local structure and water purifying ability of iron-containing waste glasses. Hyperfine Interact. 166:429–436

    Article  CAS  Google Scholar 

  5. Kubuki S, Iwanuma J, Akiyama K, Homonnay Z, Kuzmann E, Nishida T (2013) Water cleaning ability and local structure of iron-containing soda-lime silicate glass. Hyperfine Interact 218:41–45

    Article  CAS  Google Scholar 

  6. Kubuki S, Iwanuma J, Takahashi Y, Akiyama K, Homonnay Z, Sinkó K, Kuzmann E, Nishida T (2014) Visible light-activated catalytic effect of iron-containing soda-lime silicate glass characterized by 57Fe-Mössbauer spectroscopy. J Radioanal Nucl Chem 301:1–7

    Article  CAS  Google Scholar 

  7. Iida Y, Akiyama K, Kobzi B, Sinkó K, Homonnay Z, Kuzmann E, Ristić M, Krehula S, Nishida T, Kubuki S (2015) Structural analysis and visible light-activated photocatalytic activity of iron-containing soda-lime aluminosilicate glass. J Alloys Compd 645:1–6

    Article  CAS  Google Scholar 

  8. Ishikawa S, Kobzi B, Sunakawa K, Nemeth S, Lengyel A, Kuzmann E, Homonnay Z, Nishida T, Kubuki S (2017) Visible-light activated photocatalytic effect of glass and glass-ceramic prepared by recycling waste slag with hematite. Pure Appl Chem 89(4):535–554

    Article  CAS  Google Scholar 

  9. Wakasa M, Kobayashi Y, Okano M (2006) Magnetic field effect on the photocatalytic reaction with TiO2 semiconductor film. Bull Soc Sci Photo Jpn 69(4):271–275 (in Japanese)

    CAS  Google Scholar 

  10. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten Gesell. 2:98–100 (in Germany)

    Google Scholar 

  11. Van der Wurde F (1967) Mössbaeur effect in α-Fe2O3. Physica Status Solidi (b) 17(1):417–432

    Google Scholar 

  12. Murad E, Johnston JH (1984) In: Long GJ (ed) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol 2. Plenum Press, New York, pp 523–531

    Google Scholar 

  13. Hirabayashi D, Sakai Y, Yoshikawa T, Mochizuki K, Kojima Y, Suzuki K, Ohshita K, Watanabe Y (2006) Mössbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO. Hyperfine Interact 167(1–3):809–813

    Article  CAS  Google Scholar 

  14. Matsumoto Y, Omae M, Sugiyama K, Sato EI (1987) New photocathode materials for hydrogen evolution: CaFe2O4 and Sr7Fe10O22. J Phys Chem 91(3):577–581

    Article  CAS  Google Scholar 

  15. Matsumoto Y, Sugiyama K, Sato EI (1988) Improvement of CaFe2O4 photocathode by doping with Na and Mg. J Solid State Chem 74(1):117–125

    Article  CAS  Google Scholar 

  16. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449

    Article  CAS  Google Scholar 

  17. Iandolo B, Wickman B, Zorić I, Hellman A (2015) The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J Mater Chem A 3:16896–16912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Some of the authors (ASA, SI, KN, and SK) express their gratitude for the financial support from Tokyo Human Resources Fund for City Diplomacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kubuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.S., Ishikawa, S., Nomura, K. et al. Mössbauer and photocatalytic studies of CaFe2O4 nanoparticle-containing aluminosilicate prepared from domestic waste simulated slag. J Radioanal Nucl Chem 322, 1469–1476 (2019). https://doi.org/10.1007/s10967-019-06715-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06715-2

Keywords

Navigation