Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 1057–1065 | Cite as

Automated separation of 99Tc using plastic scintillation resin PSresin and openview automated modular separation system (OPENVIEW-AMSS)

  • A. Coma
  • A. TarancónEmail author
  • H. Bagán
  • J. F. García
Article
  • 39 Downloads

Abstract

Automated methods for the analysis of radionuclides potentially increase laboratory productivity by reducing operator intervention and increasing the number of samples that can be treated in a given time. To this end, here we report a new openview automated modular separation system which can be used in combination with PSresin, in this case, for the analysis of 99Tc. Quality parameters of this method using the automated system were comparable to those obtained manually and quantification of water samples spiked with low levels of 99Tc resulted in deviations lower than 10% for all the samples analysed.

Keywords

Automated PSresin 99Tc Laboratory productivity Scintillation Separation 

Notes

Acknowledgements

We thank the Spanish Ministerio de Economia, Industria y Competitividad (MINECO; award CTM2017-87107-R) and the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR; award 2017-SGR-907) for financial support. Authors also thank the support of engineers Miquel Pujades and Oliver Novella on the development of the automated system.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    OECD (2014) R&D and innovation needs for decommissioning nuclear facilities, NEA no 7191. OECD, FranceGoogle Scholar
  2. 2.
    IAEA (2016) Decommissioning and Environmental remediation, IAEA Bulletin nº 31. IAEA, ViennaGoogle Scholar
  3. 3.
    Goudeau V, Daniel B, Dubot D (2016) Mobile laboratories: an innovative and efficient solution for radiological characterization of sites under or after decommissioning. J Environ Radioact 196:194–198.  https://doi.org/10.1016/j.jenvrad.2017.04.010 CrossRefGoogle Scholar
  4. 4.
    International Atomic Energy Agency (2007) IEAE-TEADOC-1537 strategy and methodology for radioactive waste characterization. IAEA, ViennaGoogle Scholar
  5. 5.
    Barrera J, Tarancón A, Bagán H, García JF (2016) A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. Anal Chim Acta.  https://doi.org/10.1016/j.aca.2016.07.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Bagán H, Tarancón A, Rauret G, García JF (2011) Radiostrontium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis. Anal Chim Acta 686:50–56.  https://doi.org/10.1016/j.aca.2010.11.048 CrossRefPubMedGoogle Scholar
  7. 7.
    Lluch E, Barreda J, Tarancón A et al (2016) Analysis of 210Pb in water samples with plastic scintillation resins. Anal Chim Acta 940:38–45.  https://doi.org/10.1016/j.aca.2016.08.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Tarancón A, Bagán H, García JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem.  https://doi.org/10.1007/s10967-017-5494-5 CrossRefGoogle Scholar
  9. 9.
    Trojanowicz M, Kołacińska K, Grate JW (2018) A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants. Talanta 183:70–82.  https://doi.org/10.1016/j.talanta.2018.02.050 CrossRefPubMedGoogle Scholar
  10. 10.
    Kołacińska K, Trojanowicz M (2014) Application of flow analysis in determination of selected radionuclides. Talanta 125:131–145.  https://doi.org/10.1016/j.talanta.2014.02.057 CrossRefPubMedGoogle Scholar
  11. 11.
    Rodríguez R, Avivar J, Leal LO et al (2016) Strategies for automating solid-phase extraction and liquid–liquid extraction in radiochemical analysis. TrAC Trends Anal Chem 76:145–152.  https://doi.org/10.1016/j.trac.2015.09.009 CrossRefGoogle Scholar
  12. 12.
    Egorov O, O’Hara MJ, Ruzicka J, Grate JW (1998) Sequential injection separation system with stopped-flow radiometric detection for automated analysis of 99Tc in nuclear waste. Anal Chem 70:977–984CrossRefPubMedGoogle Scholar
  13. 13.
    Egorov O, O’Hara MJ, Ruzicka J, Grate JW (1999) Sequential injection renewable separation column instrument for automated sorbent extraction separations of radionuclides. Anal Chem 71:345–352CrossRefGoogle Scholar
  14. 14.
    Barbesi D, Vicente Vilas V, Millet S et al (2017) A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis. J Radioanal Nucl Chem 313:217–227.  https://doi.org/10.1007/s10967-017-5282-2 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fajardo Y, Ferrer L, Gomez E et al (2008) Development of an automatic method for americium and plutonium separation and preconcentration using an multisyringe flow injection analysis-multipumping flow system. Anal Chem 80:195–202.  https://doi.org/10.1021/ac070725m CrossRefPubMedGoogle Scholar
  16. 16.
    Villar M, Avivar J, Ferrer L et al (2013) Automatic and simple method for 99Tc determination using a selective resin and liquid scintillation detection applied to urine samples. Anal Chem 85:5491.  https://doi.org/10.1021/ac4006217 CrossRefPubMedGoogle Scholar
  17. 17.
    Qiao J, Hou X, Roos P, Miró M (2011) Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry. Anal Chim Acta 685:111–119.  https://doi.org/10.1016/j.aca.2010.10.029 CrossRefPubMedGoogle Scholar
  18. 18.
    Qiao J, Shi K, Hou X et al (2014) Rapid multisample analysis for simultaneous determination of anthropogenic radionuclides in marine environment. Environ Sci Technol 48:3935–3942.  https://doi.org/10.1021/es404584b CrossRefPubMedGoogle Scholar
  19. 19.
    Kim H, Chung KH, Jung Y et al (2015) A rapid and efficient automated method for the sequential separation of plutonium and radiostrontium in seawater. J Radioanal Nucl Chem 304:321–327.  https://doi.org/10.1007/s10967-014-3595-y CrossRefGoogle Scholar
  20. 20.
    Shi K, Qiao J, Wu W et al (2012) Rapid determination of technetium-99 in large volume seawater samples using sequential injection extraction chromatographic separation and ICP-MS measurement. Anal Chem 84:6783–6789.  https://doi.org/10.1021/ac301319a CrossRefPubMedGoogle Scholar
  21. 21.
    O’Hara MJ, Burge SR, Grate JW (2009) Automated radioanalytical system for the determination of 90Sr in environmental water samples by 90Y Cherenkov radiation counting. Anal Chem 81:1228–1237CrossRefPubMedGoogle Scholar
  22. 22.
    Grate JW, Egorov OB, Fiskum SK (1999) Automated extraction chromatographic separations of actinides using separation-optimized sequential injection techniques. Analyst 124:1143–1150CrossRefGoogle Scholar
  23. 23.
    Villar M, Avivar J, Ferrer L et al (2015) Automatic in-syringe dispersive liquid–liquid microextraction of 99Tc from biological samples and hospital residues prior to liquid scintillation counting. Anal Bioanal Chem 407:5571–5578.  https://doi.org/10.1007/s00216-015-8761-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Villarroya I, Ferradal A, Bagán H, Tarancón A, Garcia JF (2019) Development and evaluation of a plastic scintillating resin for radioactive tin determination. J Radioanal Nucl Chem 321:207–215.  https://doi.org/10.1007/s10967-019-06552-3 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Analytical ChemistryUniversity of BarcelonaBarcelonaSpain
  2. 2.Serra-Húnter ProgrammeGeneralitat de CatalunyaBarcelonaSpain

Personalised recommendations