Skip to main content
Log in

Adsorption of cesium using supermolecular impregnated XAD-7 composite: isotherms, kinetics and thermodynamics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

As an effective cesium complex agent, calix[4]biscrown-6 (CBC) applied at a low cost way is of interest. In this study, CBC/XAD-7 was prepared by embedding CBC into XAD-7. Subsequently the as-prepared sorbent was used for the removal of cesium from aqueous solution as functions of HNO3 concentration, contact time, temperature and initial cesium concentration. The results revealed that the nitric concentration influenced cesium adsorption by complex and protonation interaction. The most effective adsorption happened at the nitric concentration of 1.0 M. The adsorption isotherm well described with the Langmuir model illustrated a monolayer adsorption. Its maximum adsorption capacity was 24.4 mg/g in the 2 M nitric acid aqueous solution. The adsorption kinetics was in accordance with the pseudo-second order model, which indicated a chemisorption. The thermodynamic parameters demonstrated that the adsorption process was exothermal and spontaneous. In addition CBC/XAD-7 showed highly selective recognition toward cesium and good reusability. The study offered an economical and effective material for cesium removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berndes G, Hoogwijk M, Van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  2. Bilgen S (2014) Structure and environmental impact of global energy consumption. Renew Sustain Energy Rev 38:890–902

    Article  CAS  Google Scholar 

  3. Breyer C, Bogdanov D, Aghahosseini A et al (2018) Solar photovoltaics demand for the global energy transition in the power sector. Prog Photovolt Res Appl 26(8):505–523

    Article  Google Scholar 

  4. Kesieme U, Chrysanthou A, Catulli M et al (2018) A review of acid recovery from acidic mining waste solutions using solvent extraction. J Chem Technol Biotechnol 93(12):3374–3385

    Article  CAS  Google Scholar 

  5. Wu Y, Lee CP, Mimura H et al (2018) Stable solidification of silica-based ammonium molybdophosphate by allophane: application to treatment of radioactive cesium in secondary solid wastes generated from fukushima. J Hazard Mater 341:46–54

    Article  CAS  PubMed  Google Scholar 

  6. Swami KR, Prathibha T, Venkatesan KA et al (2019) Separation of Am (III) from Eu (III) present in 3 M nitric acid medium using completely incinerable binary extractants. J Mol Liq. 279:427–433

    Article  CAS  Google Scholar 

  7. Figueiredo BR, Cardoso SP, Portugal I et al (2018) Inorganic ion exchangers for cesium removal from radioactive wastewater. Sep Purif Rev 47(4):306–336

    Article  CAS  Google Scholar 

  8. Tanaka S, Adati T, Takahashi T et al (2018) Concentrations and biological half-life of radioactive cesium in epigeic earthworms after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 192:227–232

    Article  CAS  PubMed  Google Scholar 

  9. Vipin AK, Fugetsu B, Sakata I et al (2016) Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Sci Rep 6:37009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang H, Tangparitkul S, Hendry B et al (2019) Selective separation of cesium contaminated clays from pristine clays by flotation. Chem Eng J 355:797–804

    Article  CAS  Google Scholar 

  11. Wang K, Ma H, Pu S et al (2019) Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. J Hazard Mater 362:160–169

    Article  CAS  PubMed  Google Scholar 

  12. Husnain SM, Um W, Chang YY et al (2017) Recyclable superparamagnetic adsorbent based on mesoporous carbon for sequestration of radioactive Cesium. Chem Eng J 308:798–808

    Article  CAS  Google Scholar 

  13. Lonin AY, Levenets VV, Neklyudov IM et al (2015) The usage of zeolites for dynamic sorption of cesium from waste waters of nuclear power plants. J Radioanal Nucl Chem 303(1):831–836

    Article  CAS  Google Scholar 

  14. Bengiat R, Bogoslavsky B, Mandler D et al (2018) Selective binding and precipitation of cesium ions from aqueous solutions: a size-driven supramolecular reaction. Chem Eur J 24(13):3161–3164

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Pranolo Y, Zhu Z et al (2017) Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy 171:1–7

    Article  CAS  Google Scholar 

  16. Chakravarty R, Ram R, Pillai KT et al (2012) Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic 137Cs/137mBa generator. J Chromatogr A 1220:82–91

    Article  CAS  PubMed  Google Scholar 

  17. Kim H, Kim M, Kim W et al (2018) Photocatalytic enhancement of cesium removal by Prussian blue-deposited TiO2. J Hazard Mater 357:449–456

    Article  CAS  PubMed  Google Scholar 

  18. Dai Y, Zhang A (2014) Extraction equilibrium and thermodynamics of cesium with a new derivative of calix[4]biscrown. J Radioanal Nucl Chem 302(1):575–581

    Article  CAS  Google Scholar 

  19. Kumar N, Pham-Xuan Q, Depauw A et al (2017) New sensitive and selective calixarene-based fluorescent sensors for the detection of Cs+ in an organoaqueous medium. New J Chem 41(15):7162–7170

    Article  CAS  Google Scholar 

  20. Xiao C, Zhang A (2016) Synthesis and characterization of a cesium-selective macroporous silica-based supramolecular recognition material with high stability. J Radioanal Nucl Chem 307(1):713–723

    Article  CAS  Google Scholar 

  21. Yi R, Xu C, Sun T et al (2018) Improvement of the extraction ability of bis (2-propyloxy) calix[4]arene-crown-6 toward cesium cation by introducing an intramolecular triple cooperative effect. Sep Purif Technol 199:97–104

    Article  CAS  Google Scholar 

  22. Depauw A, Kumar N, Ha-Thi MH et al (2015) Calixarene-based fluorescent sensors for cesium cations containing BODIPY fluorophore. J Phys Chem A 119(23):6065–6073

    Article  CAS  PubMed  Google Scholar 

  23. Urban I, Ratcliffe NM, Duffield JR et al (2010) Functionalized paramagnetic nanoparticles for waste water treatment. Chem Commun 46(25):4583–4585

    Article  CAS  Google Scholar 

  24. Kumar R, Lee YO, Bhalla V et al (2014) Recent developments of thiacalixarene based molecular motifs. Chem Soc Rev 43(13):4824–4870

    Article  CAS  PubMed  Google Scholar 

  25. İnan S, Tel H, Sert Ş et al (2018) Extraction and separation studies of rare earth elements using Cyanex 272 impregnated Amberlite XAD-7 resin. Hydrometallurgy 181:156–163

    Article  CAS  Google Scholar 

  26. Dai Y, Lv R, Liu Z et al (2018) Extraction behavior of cesium from nitric acid medium with calix [4]-bis [(4-tert-butyl-1, 2-phenylene)-crown-6]. J Radioanal Nucl Chem 318(3):2079–2086

    Article  CAS  Google Scholar 

  27. Tao Q, Wang X, Huang D et al (2018) Adsorption of cesium from aqueous solution of highly concentrated nitric acid using supermolecule/ordered mesoporous carbon composite. Water Air Soil Pollut 229(11):361

    Article  CAS  Google Scholar 

  28. Pan B, Zhang X, Jiang Z et al (2019) Polymer and polymer-based nanocomposite adsorbents for water treatment[M]//polymeric materials for clean water. Springer, Cham, pp 93–119

    Book  Google Scholar 

  29. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55(7):712–724

    Google Scholar 

  30. Zhang A, Chen C, Ji Y et al (2018) Uptake of cesium and some typical metals onto hybrid calix[4]crown adsorbent with silica carrier by host-guest recognition. J Chem Eng Data 63(5):1578–1587

    Article  CAS  Google Scholar 

  31. Khandaker S, Toyohara Y, Kamida S et al (2018) Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag[J]. J Environ Manag 222:304–315

    Article  CAS  Google Scholar 

  32. Mashhadi S, Javadian H, Ghasemi M et al (2016) Microwave-induced H2SO4 activation of activated carbon derived from rice agricultural wastes for sorption of methylene blue from aqueous solution. Desalin Water Treat 57(44):21091–21104

    CAS  Google Scholar 

  33. Hosseini-Bandegharaei A, Allahabadi A, Rahmani-Sani A et al (2016) Thorium removal from weakly acidic solutions using titan yellow-impregnated XAD-7 resin beads: kinetics, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 309(2):761–776

    CAS  Google Scholar 

  34. Deng H, Li Y, Huang Y et al (2016) An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution[J]. Chem Eng J 286:25–35

    Article  CAS  Google Scholar 

  35. Kang K, Lohrman JA, Nagarajan S et al (2019) Convergent ditopic receptors enhance anion binding upon alkali metal complexation for catalyzing the ritter reaction. Organic Lett. 21(3):652–655

    Article  CAS  Google Scholar 

  36. El-Latif MMA, Elkady MF (2011) Kinetics study and thermodynamic behavior for removing cesium, cobalt and nickel ions from aqueous solution using nano-zirconium vanadate ion exchanger. Desalination 271(1–3):41–54

    Article  CAS  Google Scholar 

  37. Hassan NM, Adu-Wusu K (2005) Cesium removal from Hanford tank waste solution using resorcinol-formaldehyde resin. Solvent Extr Ion Exch 23(3):375–389

    Article  CAS  Google Scholar 

  38. Miah MY, Volchek K, Kuang W et al (2010) Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions. J Hazard Mater 183(1–3):712–717

    Article  CAS  PubMed  Google Scholar 

  39. Hadadi N, Kananpanah S, Abolghasemi H (2009) Equilibrium and thermodynamic studies of cesium adsorption on natural vermiculite and optimization of operation conditions. Iran J Chem Chem Eng (IJCCE) 28(4):29–36

    CAS  Google Scholar 

  40. Negrea A, Lupa L, Ciopec M, et al. (2014) Silica impregnated with cyphos IL-101 for Cs+ adsorption. Environ Eng Manag J (EEMJ) 13(8):2005–2013

    Article  Google Scholar 

  41. Olatunji MA, Khandaker MU, Mahmud EHNM et al (2018) Remediation of 137 Cs radionuclide in nuclear waste effluents by polymer composite: adsorption kinetics, isotherms and gamma irradiation studies. J Radioanal Nucl Chem 316:933–945

    Article  CAS  Google Scholar 

  42. Zheng X, Dou J, Yuan J et al (2017) Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite. J Environ Sci 56:12–24

    Article  Google Scholar 

  43. Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602

    Article  CAS  Google Scholar 

  44. Ding D, Zhao Y, Yang S et al (2013) Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47(7):2563–2571

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by National Natural Science Foundation of China (No. 11605027, 11705060), the Natural Science Foundation of Jiangxi Province (No. 20161BAB213086), and the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinqin Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Lv, R., Fan, J. et al. Adsorption of cesium using supermolecular impregnated XAD-7 composite: isotherms, kinetics and thermodynamics. J Radioanal Nucl Chem 321, 473–480 (2019). https://doi.org/10.1007/s10967-019-06625-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06625-3

Keywords

Navigation