Skip to main content
Log in

Filtration tests of gaseous ruthenium tetroxide by sand bed and metallic filters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work presents laboratory tests on gaseous RuO4 filtration carried out at IRSN in Cadarache. The objective is to determine if gaseous ruthenium tetroxide can be trapped by metallic filter and sand bed filter, both elements being used in filtered containment venting systems implemented on French pressurized water reactors. The results show no ruthenium tetroxide trapping by physical or chemical adsorption but certain retention is observed resulting from its thermal decomposition into solid ruthenium dioxide. A thermodynamic analysis of the system tends to confirm this conclusion. Chemical stability of RuO4(g) has to be considered as it strongly impacts potential filtration and so potential releases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giordano P, Auvinen A, Brillant G, Colombani J, Davidovich N, Dickson R, Haste T, Kärkelä T, Lamy JS, Mun C et al (2010) Recent advances in understanding ruthenium behaviour under air-ingress conditions during a PWR severe accident. Prog Nucl Energy 52:109–119

    Article  CAS  Google Scholar 

  2. Pontillon Y, Ducros G (2010) Behaviour of fission products under severe PWR accident conditions. The VERCORS experimental programme—part 3: release of low-volatile fission products and actinides. Nucl Eng Des 240:1867–1881

    Article  CAS  Google Scholar 

  3. Kärkelä T, Vér N, Haste T et al (2014) Transport of ruthenium in primary circuit conditions during a severe NPP accident. Ann Nucl Energy 74:173–183. https://doi.org/10.1016/j.anucene.2014.07.010

    Article  CAS  Google Scholar 

  4. Miradji F, Cousin F, Souvi S, et al (2015) Modelling of Ru behaviour in oxidative accident conditions and first source term assessments ERMSAR conference. In: 7th conference on severe accident research, Marseille (France), 24–26 Mar 2015

  5. Miradji F (2016) Quantum modelling of ruthenium chemistry in the field of nuclear power plant safety. Ph. D. thesis, University of Lille, France

  6. Ohnet MN, Leroy O, Mamede AS (2018) Ruthenium behavior in the reactor cooling system in case of a PWR severe accident. J Radioanal Nucl Chem 316:161–177. https://doi.org/10.1007/s10967-018-5743-2

    Article  CAS  Google Scholar 

  7. Chibani S, Badawi M, Loiseau T, Volkringer C, Cantrel L, Paul J-F (2018) A DFT study of RuO4 interactions with porous materials: metal–organic frameworks (MOFs) and zeolites. Phys Chem Chem Phys 20:16770–16776. https://doi.org/10.1039/C8CP01950A

    Article  CAS  PubMed  Google Scholar 

  8. Jacquemain D (2014) OECD/NEA/CSNI status report on filtered containment venting, NEA/CSNI/R(2014)7. https://www.oecd-nea.org/nsd/docs/2014/csni-r2014-7.pdf. Accessed July 2014

  9. Kepak F, Koutova S, Kocirik M, Zikanova A (1992) Removal of RuO4 vapors on natural clinoptilolite. J Radioanal Nucl Chem 159(2):317–334

    Article  CAS  Google Scholar 

  10. Guieu SM (2014) French NPPs filtered containment venting design international society for nuclear air treatment technologies. In: 33rd nuclear air cleaning conference, St. Louis, MO, 22–24 June 2014

  11. Mun C, Madic C, Cantrel L (2006) Review of literature on ruthenium behavior in nuclear power plant severe accidents. Nucl Technol 156(3):332–346. https://doi.org/10.13182/NT156-332

    Article  CAS  Google Scholar 

  12. Mun C (2007) Etude du comportement du produit de fission ruthénium dans l’enceinte de confinement d’un réacteur nucléaire, en cas d’accident grave. Ph. D. thesis, University of Paris XI, France

  13. Larsen RP, Ross LE (1959) Spectrophotometric determination of ruthenium. Anal Chem 31:176–178. https://doi.org/10.1021/ac60146a004

    Article  CAS  Google Scholar 

  14. Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29:2044–2078. https://doi.org/10.1002/jcc.21057

    Article  CAS  PubMed  Google Scholar 

  15. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  16. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  17. Pascal P, Charonnat R, Ciepka G et al (1958) Nouveau traité de chimie minérale, Tome XIX. Masson et Cie, Paris

    Google Scholar 

  18. Zhuravlev LC (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf Physicochem Asp 173:1–38

    Article  CAS  Google Scholar 

  19. Cordfunke EHP, Konings RJM (1993) Thermochemical data for reactor materials and fission products: the ECN database. J Phase Equilib 14:457–464. https://doi.org/10.1007/BF02671964

    Article  CAS  Google Scholar 

  20. Barin I, Knacke O, Kubaschewski O (1977) Thermochemical properties of inorganic substances: supplement. Springer, Heidelberg

    Book  Google Scholar 

  21. Garisto F (1988) Thermodynamic behaviour of ruthenium at high temperatures. Technical report AECL-9552

  22. Wang K-T, Nachimuthu S, Jiang J-C (2018) Temperature-programmed desorption studies of NH3 and H2O on the RuO2 (110) surface: effects of adsorbate diffusion. Phys Chem Chem Phys 20:24201–24209. https://doi.org/10.1039/C8CP02568A

    Article  CAS  PubMed  Google Scholar 

  23. Heras-Domingo J, Sodupe M, Solans-Monfort X (2018) Interaction between ruthenium oxide surfaces and water molecules. Effect of surface morphology and water coverage. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b06438

    Article  Google Scholar 

  24. Sheng T, Ye J-Y, Lin W-F, Sun S-G (2017) An insight into methanol oxidation mechanisms on RuO2 (100) under an aqueous environment by DFT calculations. Phys Chem Chem Phys 19:7476–7480. https://doi.org/10.1039/C6CP08522A

    Article  CAS  PubMed  Google Scholar 

  25. Hess F, Over H (2017) Rate-determining step or rate-determining configuration? The Deacon reaction over RuO2 (110) studied by DFT-based KMC simulations. ACS Catal 7:128–138. https://doi.org/10.1021/acscatal.6b02575

    Article  CAS  Google Scholar 

  26. Miradji F, Souvi S, Cantrel L et al (2015) Thermodynamic properties of gaseous ruthenium species. J Phys Chem A 119:4961–4971. https://doi.org/10.1021/acs.jpca.5b01645

    Article  CAS  PubMed  Google Scholar 

  27. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  29. Beard AM, Benson CG, Newland MS (2002) Late phase source term phenomena: transport and speciation experiments. AEAT/R/NS/0601 report

Download references

Acknowledgements

This work was performed in the frame of the French research program ANR-11-RSNR-0013-01 called MiRE (Mitigation of outside releases in case of nuclear accident), with the financial support of EDF and Framatome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nerisson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerisson, P., Hu, H., Paul, J.F. et al. Filtration tests of gaseous ruthenium tetroxide by sand bed and metallic filters. J Radioanal Nucl Chem 321, 591–598 (2019). https://doi.org/10.1007/s10967-019-06612-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06612-8

Keywords

Navigation