Skip to main content
Log in

Optimization of bioleaching of fluoride-bearing uranium ores by response surface methodology

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effect of four significant variables, namely, pH value, solid–liquid ratio, initial Fe2+, and inoculation percent, on uranium bioleaching was studied using a Box–Behnken design. The results showed that pH was the most effective parameter, followed by the solid–liquid ratio and the inoculation percent, whereas the effect of initial Fe2+ was minimal. The optimum variables for the maximum uranium bioleaching recovery (90.20% ± 0.70%) were as follows: pH, 1.80; solid–liquid ratio, 0.11 (w/v); inoculation percent, 19.20% (v/v); and initial Fe2+, 4.60 g/L. The maximum uranium recovery from the predicted models was 91.40%, which was reliable with the experimental value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang XG, Liu YJ, Sun ZX, Li J, Chai LY, Min XB, Guo YD, Li P, Zhou ZK (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314(1):251–258. https://doi.org/10.1007/s10967-017-5406-8

    Article  CAS  Google Scholar 

  2. Zmmit CM, Brugger J, Southam G, Reithet F (2014) In situ recovery of uranium—the microbial influence. Hydrometallurgy 150:236–244. https://doi.org/10.1016/j.hydromet.2014.06.003

    Article  CAS  Google Scholar 

  3. Abhilash Pandey B D, Ray L (2012) Bioleaching of apatite rich low grade Indian ura-nium ore. Can Metall Quart 51(4):390–402. https://doi.org/10.1179/1879139512Y.0000000024

    Article  CAS  Google Scholar 

  4. Abhilash Pandey B D, Singh AK (2013) Comparative performance of uranium biolea-ching from low grade Indian apatite rock in column and bioreactor. Energy Proc 39:20–32. https://doi.org/10.1016/j.egypro.2013.07.188

    Article  CAS  Google Scholar 

  5. Choi MS, Cho KS, Kim DS, Ryu HW (2005) Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 21(3):377–380. https://doi.org/10.1007/s11274-004-3627-9

    Article  CAS  Google Scholar 

  6. Tácia CV, Lázaro CS, Isabel CBR, Larissa AMS, Versiane AL (2012) The effects of fluoride and aluminum ions on ferrous-iron oxidation and copper sulfide bioleachin-g with Sulfobacillus thermosulfidooxidans. Biochem Eng J 62(3):48–55. https://doi.org/10.1016/j.bej.2012.01.003

    Article  CAS  Google Scholar 

  7. Michael LMR, Klinger CSL, Hamilton CL, Larissa AMS, Versiane AL (2015) Bioleaching of fluoride-bearing secondary copper sulphides: column experiments with Acidithiobacillus ferrooxidans. Chem Eng J 284:1279–1286. https://doi.org/10.1016/j.cej.2015.09.020

    Article  CAS  Google Scholar 

  8. Li Q, Sun J, Ding DX, Wang QL, Shi WG, Hu EM, Wang XX, Jiang XY (2017) Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers. J Radioanal Nucl Chem 314(3):1939–1946. https://doi.org/10.1007/s10967-017-5569-3

    Article  CAS  Google Scholar 

  9. Brierley JA, Kuhn MC (2010) Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy 104(3–4):410–413. https://doi.org/10.1016/j.hydromet.2010.01.013

    Article  CAS  Google Scholar 

  10. Tavakolia HZ, Abdollahya M, Ahmadi SJ, Darban AK (2017) Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. Trans Nonferrous Metal Soc 27(12):2691–2703. https://doi.org/10.1016/S1003-6326(17)60298-X

    Article  Google Scholar 

  11. Eisapour M, Keshtkar A, Moosavian MA, Rashidi A (2013) Bioleaching of uranium in batch stirred tank reactor: process optimization using Box-Behnken design. Ann Nucl Energy 54:245–250. https://doi.org/10.1016/j.anucene.2012.11.006

    Article  CAS  Google Scholar 

  12. Liu XY, Chen BW, Chen JH, Zhang MJ, Wen JK, Wang DZ, Ruan RM (2016) Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant. Miner Eng 94:76–82. https://doi.org/10.1016/j.mineng.2016.05.008

    Article  CAS  Google Scholar 

  13. Jia Y, Sun H, Chen D, Gao H, Ruan R (2016) Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar. Hydrometallurgy 164:355–361. https://doi.org/10.1016/j.hydromet.2016.07.007

    Article  CAS  Google Scholar 

  14. Liu X, Chen B, Wen J, Ruan R (2010) Leptospirillum forms a minor portion of the population in Zijinshan commercial non-aeration copper bioleaching heap identified by 16S rRNA clone libraries and real-time PCR. Hydrometallurgy 104(3–4):399–403. https://doi.org/10.1016/j.hydromet.2010.03.024

    Article  CAS  Google Scholar 

  15. Liu X, Wu B, Chen B, Wen J, Ruan R, Yao G, Wang D (2010) Bioleaching of chalcocite started at different pH: response of the microbial community to environmental stress and leaching kinetics. Hydrometallurgy 103(1–4):1–6. https://doi.org/10.1016/j.hydromet.2010.02.002

    Article  CAS  Google Scholar 

  16. Gutknecht J, Walter A (1981) Hydrofluoric and nitric acid transport through lipid bilayer membranes. BBA Biomembranes 644(1):153–156. https://doi.org/10.1016/0005-2736(81)90071-7

    Article  CAS  PubMed  Google Scholar 

  17. Ruan R, Liu X, Zou G, Chen J, Wen J, Wang D (2011) Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide. Hydrometallurgy 108(1–2):130–135. https://doi.org/10.1016/j.hydromet.2011.03.008

    Article  CAS  Google Scholar 

  18. Fatemi F, Arabieh M, Jahani S (2016) Application of response surface methodology to optimize uranium biological leaching at high pulp density. Radiochim Acta 104(4):239–246. https://doi.org/10.1515/ract-2015-2495

    Article  CAS  Google Scholar 

  19. Tavakolia HZ, Abdollahya M, Ahmadi SJ, Kdarban A (2017) Kinetics of uranium bioleaching in stirred and column reactors. Miner Eng 111:36–46. https://doi.org/10.1016/j.mineng.2017.06.003

    Article  CAS  Google Scholar 

  20. Rashidi A, Roosta-Azad R, Safdari SJ (2014) Optimization of operating parameters and rate of uranium bioleaching from a lowgrade ore. J Radioanal Nucl Chem 301(2):341–350. https://doi.org/10.1007/s10967-014-3164-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (No. 51404031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolan Mo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, X., Li, X. & Wen, J. Optimization of bioleaching of fluoride-bearing uranium ores by response surface methodology. J Radioanal Nucl Chem 321, 579–590 (2019). https://doi.org/10.1007/s10967-019-06594-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06594-7

Keywords

Navigation