Skip to main content
Log in

Assessment of radiation risk and radon exhalation rate for granite used in the construction industry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The results of the gamma spectrometry analysis of the 40 samples of highly radioactive granites used in the construction industry in Serbia are presented. Based on the measured activity concentrations of 226Ra, 232Th and 40K, radiological hazard indices, annual effective doses, as well as indoor radon concentration were determined. Calculated indoor radon concentration caused by investigated granite samples in 25% of cases exceeds the upper limit of 300 Bq m−3 recommended by the World Health Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan AR, Rafique M, Jabbar A, Rahman SU, Shahzad MI, Khan ME, Yasin M (2018) Radionuclide concentrations in sand samples from riverbanks of Muzaffarabad, Azad Kashmir. Nucl Sci Technol 29:93. https://doi.org/10.1007/s41365-018-0442-9

    Article  Google Scholar 

  2. Abdullahi S, Ismail AF, Samat S (2018) Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia. Nucl Eng Technol 51:325–336. https://doi.org/10.1016/j.net.2018.09.017

    Article  CAS  Google Scholar 

  3. Cazula CD, Campos MP, Mazzilli BP (2015) Gamma exposure due to building materials in a residential building at Peruibe, Sao Paulo, Brazil. J Radioanal Nucl Chem 306:637–640

    Article  CAS  Google Scholar 

  4. Medhat ME (2009) Assessment of radiation hazards due to natural radioactivity in some building materials used in Egyptian dwellings. Radiat Prot Dosim 133:177–185. https://doi.org/10.1093/rpd/ncp032

    Article  CAS  Google Scholar 

  5. Stoulos S, Mamolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240. https://doi.org/10.1016/S0265-931X(03)00081-X

    Article  CAS  PubMed  Google Scholar 

  6. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations Publication, New York

    Google Scholar 

  7. Alali E, Al-Shboul KF, Albdour SA (2018) Radioactivity measurement and radiological hazard assessment of the commonly used granite and marble in Jordan. Radiat Prot Dosim 182:386–393. https://doi.org/10.1093/rpd/ncy077

    Article  CAS  Google Scholar 

  8. Gupta M, Chauhan RP (2011) Estimating radiation dose from building materials. Iran J Radiat Res. 9:187–194

    Google Scholar 

  9. Abbasi A, Hassanzadeh M (2017) Measurement and Monte Carlo simulation of gamma-ray dose rate in high-exposure building materials. Nucl Sci Technol 28:1–5. https://doi.org/10.1007/s41365-016-0171-x

    Article  Google Scholar 

  10. Anjos RM, JuriAyub J, Cid AS, Cardoso R, Lacerda T (2011) External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites. J Environ Radioact 102:1055–1061. https://doi.org/10.1016/j.jenvrad.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Llope WJ (2011) Activity concentrations and dose rates from decorative granite countertops. J Environ Radioact 102:620–629. https://doi.org/10.1016/j.jenvrad.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  12. Markkanen M (1995) Radiation dose assessments for materials with elevated natural radioactivity. Finnish Centre for Radiation and Nuclear Safety STUK-B-STO 32, Helsinki

  13. UNSCEAR (1993) Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations New York, USA

  14. Official Gazette RS 36/18 (2018) Regulation on limits of radionuclide content in drinking water, foodstuffs, feeding stuffs, drugs, items of general use, building materials and other goods to be placed on the market (in Serbian). Serbian Radiation and Nuclear Safety and Security Directorate, Belgrade

    Google Scholar 

  15. Council Directive 2013/59/Euratom of 5 Dec. 2013 (2014) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. L13, vol 57. ISSN 1977-0677. https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf

  16. Sola P, Srinuttrakul W, Laoharojanaphand S, Suwankot N (2014) Estimation of indoor radon and the annual effective dose from building materials by ionization chamber measurement. J Radioanal Nucl Chem 302:1531–1535. https://doi.org/10.1007/s10967-014-3716-7

    Article  CAS  Google Scholar 

  17. Vimercati L, Fucilli F, Cavone D, De Maria L, Birtolo F, Ferri G, Soleo L, Lovreglio P (2018) Radon levels in indoor environments of the University Hospital in Bari-Apulia Region Southern Italy. Int J Environ Res Public Health 15:694. https://doi.org/10.3390/ijerph15040694

    Article  CAS  PubMed Central  Google Scholar 

  18. World Health Organization (2009) In: Zeeb H, Shannoun F (eds) Handbook on indoor radon: a public health perspective. WHO Library Cataloguing-in-Publication Data. World Health Organization, Geneva

    Google Scholar 

  19. Commission European (1999) Radiation Protection 112—radiological protection principles concerning the natural radioactivity of building materials. EC, Luxembourg

    Google Scholar 

  20. Chen J, Rahman NM, Atiya IA (2010) Radon exhalation from building materials for decorative use. J Environ Radioact 101:317–322. https://doi.org/10.1016/j.jenvrad.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  21. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment. Technical Reports Series No. 295., Vienna, Austria

  22. Todorovic N, Forkapic S, Bikit I, Mrdja D, Veskovic M, Todorovic S (2011) Monitoring for exposures to TENORM Sources in Vojvodina region. Radiat Prot Dosim 144:655–658. https://doi.org/10.1093/rpd/ncq414

    Article  CAS  Google Scholar 

  23. Moens L, Donder JD, Xi-lei L, Corte FD, Wispelaere AD, Simonits A, Hoste J (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instr Methods 187:451–472. https://doi.org/10.1016/0029-554X(81)90374-8

    Article  CAS  Google Scholar 

  24. Aykamis AS, Turhan S, AysunUgur F, Baykan UN, Kilic AM (2013) Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey. Radiat Prot Dosim 157:105–111. https://doi.org/10.1093/rpd/nct110

    Article  CAS  Google Scholar 

  25. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and byproducts. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  26. NEA-OECD (1979) Nuclear Energy Agency. Exposure to Radiation from Natural Radioactivity in Building Materials. Reported by NEA Group of Experts, OECD, Paris

  27. Kobeissi MA, El-Samad O, Rachidi I (2013) Health assessment of natural radioactivity and radon exhalation rate in granites used as building materials in Lebanon. Radiat Prot Dosim 153:342–351. https://doi.org/10.1093/rpd/ncs110

    Article  CAS  Google Scholar 

  28. Al-Zahrani JH (2017) Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia. J Radiat Res Appl Sci 10:241–245. https://doi.org/10.1016/j.jrras.2017.05.001

    Article  CAS  Google Scholar 

  29. Thabayneh KM (2013) Measurement of natural radioactivity and radon exhalation rate in granite samples used in Palestinian buildings. Arab J Sci Eng 38:201–207. https://doi.org/10.1007/s13369-012-0391-2

    Article  CAS  Google Scholar 

  30. Pantelic GK, Todorovic DJ, Nikolic JD, Rajacic MM, Jankovic MM, Sarap NB (2014) Measurement of radioactivity in building materials in Serbia. J Radioanal Nucl Chem 303:2517–2522. https://doi.org/10.1007/s10967-014-3745-2

    Article  CAS  Google Scholar 

  31. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170. https://doi.org/10.1016/j.jenvrad.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  32. International Commission on Radiological Protection (1994) Protection against Radon-222 at home and at work (ICRP Publication No. 65). Annals of the ICRP 23(2). Pergamon Press, Oxford

  33. Qureshi AA, Jadoon IAK, Wajid AA, Attique A, Masood A, Anees M, Manzoor S, Waheed A, Tubassam A (2013) Study of natural radioactivity in mansehra granite, Pakistan: environmental concerns. Radiat Prot Dosim 158:466–478. https://doi.org/10.1093/rpd/nct271

    Article  CAS  Google Scholar 

  34. Hassan MN, Mansour NA, Fayez-Hassan M (2013) Evaluation of radionuclide concentration and associated radiological hazard indexes in building materials used in Egypt. Radiat Prot Dosim 157:214–220. https://doi.org/10.1093/rpd/nct129

    Article  CAS  Google Scholar 

  35. UNSCEAR (2008) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations Publication, New York

    Google Scholar 

  36. International Commission on Radiological Protection (2006) Assessing dose of the representative person for the purpose of the radiation protection of the public. (ICRP Publication No. 101a) Annals of the ICRP 36(3)

  37. Leal ALC, Lauria DC (2016) Assessment of doses to members of the public arising from the use of ornamental rocks in residences. J Radiol Prot 36:680–694. https://doi.org/10.1088/0952-4746/36/3/680

    Article  CAS  Google Scholar 

  38. Poncela LSQ, Fernández PL, Gómez Arozamena J, Sainz C, Fernández JA, Mahou ES, Matarranz M, Cascón MC (2004) Natural gamma radiation map (MARNA) and indoor radon levels in Spain. Environ Int 29:1091–1096. https://doi.org/10.1016/S0160-4120(03)00102-8

    Article  CAS  Google Scholar 

  39. Sharaf JM, Hamideen MS (2013) Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate. Appl Radiat Isot 80:61–66. https://doi.org/10.1016/j.apradiso.2013.06.016

    Article  CAS  PubMed  Google Scholar 

  40. Al-Jarallah M (2001) Radon exhalation from granites used in Saudi Arabia. J Environ Radioact 53:91–98. https://doi.org/10.1016/s0265-931x(00)00110-7

    Article  CAS  PubMed  Google Scholar 

  41. Rafique M, Rathore MH (2013) Determination of radon exhalation from granite, dolerite and marbles decorative stones of the Azad Kashmir area, Pakistan. Int J Environ Sci Technol 10:1083–1090. https://doi.org/10.1007/s13762-013-0288-y

    Article  CAS  Google Scholar 

  42. Bala P, Kumar V, Mehra R (2017) Measurement of radon exhalation rate in various building materials and soil samples. J Earth Syst Sci 126:31. https://doi.org/10.1007/s12040-017-0797-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks the financial support of the Ministry of Education, Science and Technological Development of the Government of the Republic of Serbia, within the projects Nuclear Methods Investigations of Rare Processes and Cosmic No. 171002, Biosensing Technologies and Global System for Continues Research and Integrated Management No. 43002 and Development and Application of Multifunctional Materials Using Domestic Raw Materials in Upgraded Processing Lines No. III45008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Todorović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, P., Todorović, N., Nikolov, J. et al. Assessment of radiation risk and radon exhalation rate for granite used in the construction industry. J Radioanal Nucl Chem 321, 565–577 (2019). https://doi.org/10.1007/s10967-019-06592-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06592-9

Keywords

Navigation