Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 2, pp 541–556 | Cite as

Palaeoenvironmental significance and pathways of calcrete development investigated with nuclear and related methods

  • Ana Luísa RodriguesEmail author
  • Maria Isabel Dias
  • Fernando Rocha
  • Maria Isabel Prudêncio
  • Rosa Marques
  • Dulce Russo
  • Guilherme Cardoso


The genesis and development of calcretes are discussed by using nuclear and related methods of analyses. In the studied calcrete, smectite is the main clay mineral associated with palygorskite. Chemical elements proportions, particularly V, U, Mn, Cu, Ba and REE, indicate a change to more oxidizing conditions and the contribution of bio-mediated processes in the oxalate-carbonate pathway, also confirmed by the presence of needle-fibre calcite. The proposed pathways leading to the studied calcrete development comprise both abiotic and biogenic genesis, emphasizing the polygenetic character due to different agents and processes and the paleoenvironmental trend towards aridification, with a transition between lacustrine and palustrine environments.


Calcrete Paleoenvironmental reconstruction Clay minerals Needle-fibre calcite Chemical and mineralogical indexes Nuclear methods 



Authors gratefully acknowledge the FCT (Portuguese Science and Technology Foundation) support through the UID/Multi/04349/2013 (including the post-doctoral grant of the first author in the C2TN) and the UID/GEO/04035/2013 projects. The first author also acknowledges the financial support provided by FCT with PhD grant SFRH/BD/62396/2009 and post-doctoral grant SFRH/BPD/114986/2016.


  1. 1.
    Durand N, Gunnell Y, Curmi P, Ahmad SM (2006) Pathways of calcrete development on weathered silicate rocks in Tamil Nadu, India: mineralogy, chemistry and paleoenvironmental implications. Sediment Geol 192:1–18. CrossRefGoogle Scholar
  2. 2.
    Platt NH, Wright VP (2009) Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadón P, Cabrera L, Kelts K (eds) Lacustrine facies analysis. Wiley, New YorkGoogle Scholar
  3. 3.
    Alonso-Zarza AM, Tanner LH (2010) Carbonates in continental settings: facies, environments, and processes. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Khadkikar AS, Chamyal LS, Ramesh R (2000) The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climates. Palaeogeogr Palaeoclimatol Palaeoecol 162:239–261. CrossRefGoogle Scholar
  5. 5.
    Bowen GJ, Daniels AL, Bowen BB (2008) Paleoenvironmental isotope geochemistry and paragenesis of lacustrine and palustrine carbonates, Flagstaff Formation, Central Utah, U.S.A. J Sediment Res 78:162–174. CrossRefGoogle Scholar
  6. 6.
    Eren M, Kadir S, Hatipoǧlu Z, Gül M (2008) Quaternary calcrete development in the Mersin area, southern Turkey. Turk J Earth Sci 17:763–784Google Scholar
  7. 7.
    Wanas HA, Soliman HE (2014) Calcretes and palustrine carbonates in the Oligo-Miocene clastic-carbonate unit of the Farafra Oasis, Western Desert, Egypt: their origin and paleoenvironmental significance. J Afr Earth Sci 95:145–154. CrossRefGoogle Scholar
  8. 8.
    Soukaina E, Lahcen D, Badr A, Nathalie F (2017) Development of quaternary calcrete in the Tensift Al Haouz area, Central Morocco: characterization and environmental significance. CATENA 149:331–340. CrossRefGoogle Scholar
  9. 9.
    Netterberg F (1980) Geology of Southern African calcretes: 1. Terminology, description, macrofeatures and classification. South Afr J Geol 83:255–283Google Scholar
  10. 10.
    Machette MN (1985) Calcic soils of the south-western United States. Spec Pap Geol Soc Am 203:1–21. Google Scholar
  11. 11.
    Pimentel NL, Wright VP, Azevedo TM (1996) Distinguishing early groundwater alteration effects from pedogenesis in ancient alluvial basins: examples from the palaeogene of southern Portugal. Sediment Geol 105:1–10. CrossRefGoogle Scholar
  12. 12.
    Khadkikar AS, Merh SS, Malik JN, Chamyal LS (1998) Calcretes in semi-arid alluvial systems: formative pathways and sinks. Sediment Geol 116:251–260. CrossRefGoogle Scholar
  13. 13.
    Nash DJ, McLaren SJ (2007) Geochemical Sediments and Landscapes. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  14. 14.
    Chen XY, Lintern MJ, Roach IC (2002) Calcrete: characteristics, distribution and use in mineral exploration. Cooperative Research Centre for Landscape Environments and Mineral Exploration, KensingtonGoogle Scholar
  15. 15.
    Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci Rev 60:261–298. CrossRefGoogle Scholar
  16. 16.
    Kaplan MY, Eren M, Kadir S, Kapur S (2013) Mineralogical, geochemical and isotopic characteristics of Quaternary calcretes in the Adana region, southern Turkey: implications on their origin. CATENA 101:164–177. CrossRefGoogle Scholar
  17. 17.
    Küçükuysal C, Kapur S (2014) Mineralogical, geochemical and micromorphological evaluation of the Plio-Quaternary paleosols and calcretes from Karahamzall, Ankara (Central Turkey). Geol Carpathica 65:241–253. CrossRefGoogle Scholar
  18. 18.
    Achyuthan H, Shankar N, Braida M, Ahmad SM (2012) Geochemistry of calcretes (calcic palaeosols and hardpan), Coimbatore, Southern India: formation and paleoenvironment. Quat Int 265:155–169. CrossRefGoogle Scholar
  19. 19.
    Singh BP, Pawar JS, Patra A (2013) Geochemistry of Late Eocene/Oligocene calcretes (caliche) of the Northwestern Himalaya, India. Himal Geol 34:135–140Google Scholar
  20. 20.
    Grevenitz P, Chivas AR (2005) Statistical methods for determining geochemical residence in mineral phases: evaluation of pedogenic calcreto trace element data. In: Roach IC (ed) Regolith 2005—ten years of CRC LEME. CRC LEME, pp 120–124Google Scholar
  21. 21.
    McQueen KG (2006) Calcrete geochemistry in the Cobar-Girilambone region. New South Wales CRC LEME Open File Rep 200:27Google Scholar
  22. 22.
    Prudêncio MI, Dias MI, Waerenborgh JC et al (2011) Rare earth and other trace and major elemental distribution in a pedogenic calcrete profile (Slimene, NE Tunisia). CATENA 87:147–156. CrossRefGoogle Scholar
  23. 23.
    Buggle B, Glaser B, Hambach U et al (2011) An evaluation of geochemical weathering indices in loess-paleosol studies. Quat Int 240:12–21. CrossRefGoogle Scholar
  24. 24.
    Tandon SK, Kumar S (1999) Semi-arid/arid zone calcretes: a review. In: Singhvi AK, Derbyshire E (eds) Palaeoenviron- mental reconstruction in arid lands. Oxford and IBH Publishing Co, New Delhi, pp 109–152Google Scholar
  25. 25.
    Dhir RP, Tandon SK, Sareen BK et al (2004) Calcretes in the Thar desert: genesis, chronology and palaeoenvironment. Proc Indian Acad Sci Earth Planet Sci 113:473–515. Google Scholar
  26. 26.
    Khoury HN, Salameh EM, Clark ID (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Appl Geochem 43:49–65. CrossRefGoogle Scholar
  27. 27.
    Verrecchia EP, Dumont J-L, Verrecchia KE (1993) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel. J Sediment Res 63:1000–1006Google Scholar
  28. 28.
    Pimentel NLV (2002) Pedogenic and early diagenetic processes in Palaeogene alluvial fan and lacustrine deposits from the Sado Basin (S Portugal). Sediment Geol 148:123–138. CrossRefGoogle Scholar
  29. 29.
    Alves TM, Gawthorpe RL, Hunt DW, Monteiro JH (2003) Cenozoic tectono-sedimentary evolution of the western Iberian margin. Mar Geol 195:75–108. CrossRefGoogle Scholar
  30. 30.
    Pais J (2012) The paleogene and neogene of Western Iberia (Portugal). Springer, BerlinCrossRefGoogle Scholar
  31. 31.
    Barros e Carvalhosa A, Galopim de Carvalho AM (1970) Carta Geológica de Portugal na escala de 1/50000, Lisboa, Notícia explicativa da Folha 43-B MouraGoogle Scholar
  32. 32.
    Oliveira JT (1992) Carta Geológica de Portugal à escala 1:200 000, Lisboa, Noticia Explicativa da Folha 8Google Scholar
  33. 33.
    Stosch H-G (2016) Neutron activation analysis of the rare earth elements (REE)—with emphasis on geological materials. Phys Sci Rev 1:1–25. CrossRefGoogle Scholar
  34. 34.
    Gméling K, Simonits A, Sziklai László I, Párkányi D (2014) Comparative PGAA and NAA results of geological samples and standards. J Radioanal Nucl Chem 300:507–516. CrossRefGoogle Scholar
  35. 35.
    Dias MI, Prudêncio MI, Gouveia MA et al (2010) Chemical tracers of Lusitanian amphorae kilns from the Tagus estuary (Portugal). J Archaeol Sci 37:784–798. CrossRefGoogle Scholar
  36. 36.
    Prudêncio MI, Dias MI, Gouveia MA et al (2009) Geochemical signatures of Roman amphorae produced in the Sado River estuary, Lusitania (Western Portugal). J Archaeol Sci 36:873–883. CrossRefGoogle Scholar
  37. 37.
    Marques R, Waerenborgh JCC, Prudêncio MII et al (2014) Iron speciation in volcanic topsoils from Fogo island (Cape Verde)—iron oxide nanoparticles and trace elements concentrations. CATENA 113:95–106. CrossRefGoogle Scholar
  38. 38.
    Oyedotun TDT (2018) X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geol Ecol Landsc 2:148–154. CrossRefGoogle Scholar
  39. 39.
    Francis RE, Aguilar R (1995) Calcium carbonate effects on soil textural class in semiarid wildland soils. Arid Soil Res Rehabil. Google Scholar
  40. 40.
    Kerry R, Rawlins BG, Oliver MA, Lacinska AM (2009) Problems with determining the particle size distribution of chalk soil and some of their implications. Geoderma 152:324–337. CrossRefGoogle Scholar
  41. 41.
    Thorez J (1976) Practical identification of clay minerals. G. Lelotte, BelgiumGoogle Scholar
  42. 42.
    Brindley GW, Brown G, Brindley GW, Brown G, Brindley GW, Brown G, Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Monograph 5. Mineralogical Society, LondonGoogle Scholar
  43. 43.
    Moore D, Reynolds R, Moore MD, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, OxfordGoogle Scholar
  44. 44.
    Schultz LG (1964) Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. US Geol Surv Prof Pap 391:1–31Google Scholar
  45. 45.
    Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832CrossRefGoogle Scholar
  46. 46.
    Martin-Pozas JM (1968) El analisis mineralógico cuantitativo de los filosilicatos de la arcilla por difracción de rayos X. University of Granada, SpainGoogle Scholar
  47. 47.
    Rocha FJFT (1993) Argilas aplicadas a estudos litoestratigráficos e paleoambientais na bacia sedimentar de Aveiro. University of Aveiro, PortugalGoogle Scholar
  48. 48.
    Trindade MJ, Dias MI, Coroado J, Rocha F (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl Clay Sci 42:345–355. CrossRefGoogle Scholar
  49. 49.
    Marques R, Dias MI, Isabel Prudêncio M, Rocha F (2011) Upper cretaceous clayey levels from western Portugal (Aveiro and Taveiro regions): clay mineral and trace-element distribution. Clays Clay Miner 59:315–327. CrossRefGoogle Scholar
  50. 50.
    Trindade MJ, Prudêncio MI, Burbidge CI et al (2014) Study of an aplite dyke from the Beira uraniferous province in Fornos de Algodres area (Central Portugal): trace elements distribution and evaluation of natural radionuclides. Appl Geochem 44:111–120. CrossRefGoogle Scholar
  51. 51.
    Marques R, Prudêncio MI, Dias MI, Rocha F (2011) Patterns of rare earth and other trace elements in different size fractions of clays of Campanian-Maastrichtian deposits from the Portuguese western margin (Aveiro and Taveiro Formations). Chem Erde 71:337–347. CrossRefGoogle Scholar
  52. 52.
    Trindade MJ, Dias MI, Rocha F et al (2011) Bromine volatilization during firing of calcareous and non-calcareous clays: archaeometric implications. Appl Clay Sci 53:489–499. CrossRefGoogle Scholar
  53. 53.
    Govindaraju K (1994) Compilation of working values and sample description for 383 Geostandards. Geostand Newsl 18:1–158. CrossRefGoogle Scholar
  54. 54.
    Dias MI, Prudencio MI (2007) Neutron activation analysis of archaeological materials: an overview of the ITN NAA Laboratory, Portugal. Archaeometry 49:383–393CrossRefGoogle Scholar
  55. 55.
    Dias MI, Prudêncio MI, Valera AC (2017) Provenance and circulation of Bell Beakers from Western European societies of the 3rd millennium BC: the contribution of clays and pottery analyses. Appl Clay Sci 146:334–342. CrossRefGoogle Scholar
  56. 56.
    Korotev RL (1996) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand Newsl 20:217–245. CrossRefGoogle Scholar
  57. 57.
    Korotev R (1996) On the relationship between the Apollo 16 ancient regolith breccias and feldspathic fragmental breccias, and the composition of the prebasin crust in the Central Highlands of the Moon. Meteorit Planet Sci 31:403–412. CrossRefGoogle Scholar
  58. 58.
    Rudnick RL, Gao S (2003) The composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise geochem: the crust, vol 3. Elsevier, Oxford, pp 1–64Google Scholar
  59. 59.
    Rocha F, Ramalho E (2003) Mineralogia dos paleossolos e crostas carbonatadas do Cabo Mondego (Portugal). Ciencias da Terra No Esp V No Esp.V:B93–B96Google Scholar
  60. 60.
    Retallack GJ (2001) Soils of the past: an introduction to paleopedology, 2nd edn. Wiley, OxfordCrossRefGoogle Scholar
  61. 61.
    Sheldon ND, Tabor NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci Rev 95:1–52. CrossRefGoogle Scholar
  62. 62.
    Verrecchia EP, Verrecchia KE (1994) Needle-fiber calcite; a critical review and a proposed classification. J Sediment Res 64:650–664. Google Scholar
  63. 63.
    Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminium to zirconium. Earth Sci Rev 100:1–420. CrossRefGoogle Scholar
  64. 64.
    Salminen R, Batista MJ, Bidovec M et al (2005) FOREGS geochemical atlas of Europe, Part 1: background information, methodology and maps. Geological Survey of Finland, EspooGoogle Scholar
  65. 65.
    Marques R, Jorge A, Franco D et al (2010) Clay resources in the Nelas region (Beira Alta), Portugal. A contribution to the characterization of potential raw materials for prehistoric ceramic production. Clay Miner 45:353–370. CrossRefGoogle Scholar
  66. 66.
    Marques R, Prudêncio MI, Rocha F et al (2012) REE and other trace and major elements in the topsoil layer of Santiago island, Cape Verde. J Afr Earth Sci 64:20–33. CrossRefGoogle Scholar
  67. 67.
    Goldberg S, Forster HS, Godfrey CL (1996) Molybdenum adsorption on oxides, clay minerals, and soils. Soil Sci Soc Am J 60:425. CrossRefGoogle Scholar
  68. 68.
    Capo RC, Chadwick OA (1999) Sources of strontium and calcium in desert soil and calcrete. Earth Planet Sci Lett 170:61–72. CrossRefGoogle Scholar
  69. 69.
    Xiongxin D, Zuyl T (2006) Effect of carbonates on sorption and migration of radiostrontium in calcareous soil. J Radioanal Nucl Chem 242:727–730. CrossRefGoogle Scholar
  70. 70.
    Verrecchia EP (2000) Fungi and sediments. Microb Sediments. Google Scholar
  71. 71.
    Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. Fungi Biogeochem Cycles 9780521845:289–310. CrossRefGoogle Scholar
  72. 72.
    Gadd GM, Bahri-Esfahani J, Li Q et al (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55. CrossRefGoogle Scholar
  73. 73.
    Dorn RI (2007) Rock varnish. In: Nash IJ, McLaren DJ (eds) Geochemical Sediments and Landscapes. Wiley, New York, pp 246–297CrossRefGoogle Scholar
  74. 74.
    Krug MA (1995) Geochemical exploration in Calcrete Terrains. Rhodes University, GrahamstownGoogle Scholar
  75. 75.
    Lopez-Galindo A, Ben Aboud A, Fenoll Hach-Ali P, Casas Ruiz J (1996) Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor. Clay Miner 31:33–44. CrossRefGoogle Scholar
  76. 76.
    Laveuf C, Cornu S (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes. Geoderma 154:1–12. CrossRefGoogle Scholar
  77. 77.
    Turan NG, Elevli S, Mesci B (2011) Adsorption of copper and zinc ions on illite: determination of the optimal conditions by the statistical design of experiments. Appl Clay Sci. Google Scholar
  78. 78.
    Sheldon ND, Chakrabarti R, Retallack GJ, Smith RMH (2014) Contrasting geochemical signatures on land from the Middle and Late Permian extinction events. Sedimentology 61:1812–1829. CrossRefGoogle Scholar
  79. 79.
    Strong GE, Giles JRA, Wright VP (1992) A Holocene calcrete from North Yorkshire, England: implications for interpreting palaeoclimates using calcretes. Sedimentology 39:333–347. CrossRefGoogle Scholar
  80. 80.
    Bajnóczi B, Kovács-Kis V (2006) Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition-a case study of a Quaternary paleosol from Hungary. Chem Erde 66:203–212. CrossRefGoogle Scholar
  81. 81.
    Jones B (2017) Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sediment Geol 354:9–23. CrossRefGoogle Scholar
  82. 82.
    Curry MD, Boston PJ, Spilde MN et al (2009) Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska. Int J Speleol 38:111–128. CrossRefGoogle Scholar
  83. 83.
    Churchman GJ, Lowe DJ (2012) Alteration, formation, and occurrence of minerals in soils. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences—volume 1: properties and processes, 2nd edn. CRC Press, Boca Raton, pp 1–72Google Scholar
  84. 84.
    Galán E (2006) Chapter 14 genesis of clay minerals. Dev Clay Sci 1:1129–1162. CrossRefGoogle Scholar
  85. 85.
    Birsoy R (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner 50:736–745. CrossRefGoogle Scholar
  86. 86.
    Knidiri A, Daoudi L, El Ouahabi M et al (2014) Palaeogeographic controls on palygorskite occurrence in Maastrichtian-Palaeogene sediments of the Western High Atlas and Meseta Basins (Morocco). Clay Miner 49:595–608. CrossRefGoogle Scholar
  87. 87.
    Singer A (1979) Palygorskite in sediments: detrital, diagenetic or neoformed—a critical review. Geol Rundschau 68:996–1008. CrossRefGoogle Scholar
  88. 88.
    Chamley H (1989) Clay sedimentology. Springer, New YorkCrossRefGoogle Scholar
  89. 89.
    Milnes AR (1992) Calcretes. Weathering soils and paleosoils. In: Martini IP, Chesworth W (eds) Developments in earth surface processes, vol 2. Elsevier, AmsterdamGoogle Scholar
  90. 90.
    Gallala W, Gaied ME, Essefi E, Montacer M (2010) Pleistocene calcretes from eastern Tunisia: the stratigraphy, the microstructure and the environmental significance. J Afr Earth Sci 58:445–456. CrossRefGoogle Scholar
  91. 91.
    Kadir S, Eren M, Külah T et al (2014) Genesis of Late Miocene-Pliocene lacustrine palygorskite and calcretes from Kır s ehir, central Anatolia, Turkey. Clay Miner 49:473–494. CrossRefGoogle Scholar
  92. 92.
    AlShuaibi AA, Khalaf FI (2011) Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait. J Asian Earth Sci 42:423–439. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  2. 2.Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  3. 3.Departamento de GeociênciasUniversidade de AveiroAveiroPortugal
  4. 4.GeoBioTecUniversidade de AveiroAveiroPortugal

Personalised recommendations