Skip to main content
Log in

Detection of sulfur in soil samples using 2.5 MeV neutron activation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sulfur concentrations in soil samples containing 4.4–13.47 wt% sulphur were measured in neutron inelastic scattering using dc beams of 2.5 MeV neutrons from a DD neutron generator. The measurements were carried out using 2230 keV prompt gamma rays from sulfur using a CeBr3 detector. The minimum detectable concentration (MDC) of sulfur was 0.68 ± 0.21 wt%. The present MDC value is about one-fifth of an earlier reported value of 3.50 wt% for 3.2 MeV neutron beams. This study has shown an improvement in the sulfur MDC achieved using 2.5 MeV neutron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chichester DL, Simpson JD, Lemchak M (2007) Advanced compact accelerator neutron generator technology for active neutron interrogation field work. J Radioanal Nucl Chem 271:629–637

    Article  CAS  Google Scholar 

  2. Lindstrom RM (2018) Nuclear analysis at NBS and NIST. J Radioanal Nucl Chem 318(3):1465–1471

    Article  CAS  Google Scholar 

  3. Falahat S, Köble T, Schumann O, Waring C, Watt G (2012) Development of a surface scanning soil analysis instrument. Appl Radiat Isot 70(7):1107–1109

    Article  CAS  PubMed  Google Scholar 

  4. Naqvi AA, Al-Matouq FA, Khiari FZ, Isab AA, Raashid M, Khateeb-ur-Rehman AA (2013) Hydrogen, carbon and oxygen determination in proxy material samples using a LaBr 3: Ce detector. Appl Radiat Isot 78:145–150

    Article  CAS  PubMed  Google Scholar 

  5. Naqvi AA, Khiari FZ, Liadi FA, Khateeb-ur-Rehman AA, Raashid MA, Isab AA (2016) Moisture effect in prompt gamma measurements from soil samples. Appl Radiat Isot 115:61–66

    Article  CAS  PubMed  Google Scholar 

  6. Naqvi AA, Khiari FZ, Liadi FA, Khateeb-ur-Rehman AA, Raashid MA, Isab AA (2018) Neutron moderation effects in phc-contaminated soil samples. J Radioanal Nucl Chem 315(3):475–480

    Article  CAS  Google Scholar 

  7. Dokhale PA, Csikai J, Oláh L (2001) Investigations on neutron-induced prompt gamma ray analysis of bulk samples. Appl Radiat Isot 54:967–971

    Article  CAS  PubMed  Google Scholar 

  8. Wielopolski L, Chatterjee A, Mitra S, Lal R (2011) In situ determination of Soil carbon pool by inelastic neutron scattering: comparison with dry combustion. Geoderma 160:394–399

    Article  CAS  Google Scholar 

  9. Naqvi AA, Al-Anezi MS, Kalakada Z, Isab AA, Raashid M, Al Matouq FA, Khateeb-ur-Rehman AA, Khiari FZ, Garwan MA, Al-Amoudi OSB, Maslehuddin M (2011) Detection efficiency of low levels of boron and cadmium with a LaBr 3: Ce scintillation detector. Nucl Instrum Methods Phys Res A 665:74–79

    Article  CAS  Google Scholar 

  10. Naqvi AA, Khiari FZ, Liadi FA, Khateeb-ur-Rehman AA, Isab AA (2016) Performance tests of a large volume cerium tribromide (Cebr3) scintillation detector. Appl Radiat Isot 114:50–56

    Article  CAS  PubMed  Google Scholar 

  11. Barchuk IF, Pasechnik MV, Tsybul’ko IA (1958) γ-Ray spectra excited in inelastic scattering of fast neutrons on manganese, aluminum, iron. copper, tin, and antimony. Sov J At Energy 4(2):175–180

    Article  CAS  Google Scholar 

  12. Jiggins AH, Habbani FI (1976) Prompt gamma-ray analysis using 3.29 MeV neutron inelastic scattering. Int J Appl Radiat Isot 27:689–693

    Article  CAS  Google Scholar 

  13. Scherrer VE, Allison BA, Faust WR (1954) Gamma radiation from interaction of 3.2-Mev neutrons with various materials. Phys Rev 96(2):386–388

    Article  CAS  Google Scholar 

  14. Stehn JR, Goldberg MD, Magurno BA, Wiener-Chasman R (1964) Brookhaven National Laboratory.; U.S. Atomic Energy Commission. Sigma Center Report, Brookhaven National Laboratory

  15. Choi HD, Firestone RB, Lindstrom RM, Molnar GL, Mughabghab SF, Paviotti-Corcuera R, Revay Zs, Trkov A, Zhou CM (2006) Database of prompt gamma-rays from slow neutron capture for elemental analysis. International Atomic Energy Agency, Vienna

    Google Scholar 

  16. Carn SA, Krueger AJ, Krotkov NA, Yang K, Levelt PF (2007) Sulfur dioxide emissions from Peruvian copper smelters detected by the Ozone Monitoring Instrument. Geophys Res Lett 34:L09801. https://doi.org/10.1029/2006gl029020

    Article  Google Scholar 

  17. Dudka S, Adriano DC (1997) Environmental impacts of metal ore mining and processing: a review. J Environ Qual 26(3):590–602

    Article  CAS  Google Scholar 

  18. Brown KA (1982) Sulphur in the environment: a review. Environ Pollut Ser B Chem Phys 3(1):47–80

    Article  CAS  Google Scholar 

  19. Hao J, Wang S, Liu B, He K (2001) Plotting of acid rain and sulfur dioxide pollution control zones and integrated control planning in China. Water Air Soil Pollut 130(1–4):259–264

    Article  Google Scholar 

  20. Cazzaniga C, Nocente M, Tardocchi M, Croci G, Giacomelli L, Angelone M, Pillon M, Villari S, Weller A, Petrizzi L, Gorini G, ASDEX Upgrade Team, JET-EFDA Contributors (2013) Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons. Rev Sci Instrum 84:123505

    Article  CAS  PubMed  Google Scholar 

  21. Quarati FGA, Dorenbos P, van der Biezen J, Owens A, Selle M, Parthier L, Schotanus P (2013) Scintillation and detection characteristics of high-sensitivity CeBr 3 gamma-ray spectrometers. Nucl Inst Methods Phys Res A729:596–604

    Article  CAS  Google Scholar 

  22. Choi HD, Firestone RB, Lindstrom RM, Molnar GL, Mughabghab SF, Paviotti-Corcuera R, Revay Zs, Trkov A, Zhou CM (2006) Database of prompt gamma-rays from slow neutron capture for elemental analysis. International Atomic Energy Agency, Vienna

    Google Scholar 

  23. Linde DA, Day RB (1961) Studies of gamma rays from neutron inelastic scattering. Ann Phys 12:485–532

    Article  Google Scholar 

  24. Gedcke DA (2001) How counting statistics controls detection limits and peak precision. ORTEC Application Notes AN59.www.ortec-online.com. Accessed 27 May 2019

Download references

Acknowledgements

The support provided by the Departments of Physics and Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Naqvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, A.A., Khiari, F.Z., Al-Abdallah, T. et al. Detection of sulfur in soil samples using 2.5 MeV neutron activation. J Radioanal Nucl Chem 321, 355–360 (2019). https://doi.org/10.1007/s10967-019-06589-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06589-4

Keywords

Navigation