Skip to main content
Log in

The study of Zr adsorption on nanodispersed hydroxyapatite: X-ray photoelectron study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Elemental and phase composition of hydroxyapatite (HA) nanoparticle surface with absorbed zirconium were studied with X-ray photoelectron spectroscopy. Zr4+ adsorption on HA nanocrystals as a function of hydrochloric solution pH was established. The mechanism of interaction of zirconium with the HA surface was discussed. The obtained results are fundamental for 89Zr-based radiopharmaceuticals with a new design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu SYF, Ekström LP, Firestone RB. WWW table of radioactive isotopes. In: Database version 1999-02-28

  2. Deri MA, Zeglis BM, Francesconi LC, Lewis JS (2013) PET imaging with89Zr: from radiochemistry to the clinic. Nucl Med Biol 40:3–14. https://doi.org/10.1016/j.nucmedbio.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  3. Moek KL, Giesen D, Kok IC et al (2017) Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 58:83S–90S. https://doi.org/10.2967/jnumed.116.186940

    Article  CAS  PubMed  Google Scholar 

  4. Rice SL, Roney CA, Daumar P, Lewis JS (2011) The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med 41:265–282. https://doi.org/10.1053/j.semnuclmed.2011.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jauw YW, der Houven Menke-van, van Oordt CW, Hoekstra OS et al (2016) Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? Front Pharmacol 7:1–15. https://doi.org/10.3389/fphar.2016.00131

    Article  CAS  Google Scholar 

  6. van de Watering FCJ, Rijpkema M, Perk L et al (2014) Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int 2014:1–13. https://doi.org/10.1155/2014/203601

    Article  CAS  Google Scholar 

  7. Heskamp S, Raavé R, Boerman OC et al (2017) 89 Zr-immunoPET in oncology: state of the art 89 Zr-radiochemistry. Bioconjug Chem. https://doi.org/10.1021/acs.bioconjchem.7b00325

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jansen MH, Veldhuijzen van Zanten SEM, van Vuurden DG et al (2017) Molecular drug imaging: 89 Zr-bevacizumab PET in children with diffuse intrinsic pontine glioma. J Nucl Med 58:711–716. https://doi.org/10.2967/jnumed.116.180216

    Article  CAS  PubMed  Google Scholar 

  9. Price EW, Carnazza KE, Carlin SD et al (2017) 89 Zr-DFO-AMG102 immuno-PET to determine local hepatocyte growth factor protein levels in tumors for enhanced patient selection. J Nucl Med 58:1386–1394. https://doi.org/10.2967/jnumed.116.187310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Es SC, Brouwers AH, Mahesh SVK et al (2017) 89 Zr-bevacizumab PET: potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma. J Nucl Med 58:905–910. https://doi.org/10.2967/jnumed.116.183475

    Article  CAS  PubMed  Google Scholar 

  11. Holland JP, Sheh Y, Lewis JS (2009) Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 36:729–739. https://doi.org/10.1016/j.nucmedbio.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Severin GW, Jørgensen JT, Wiehr S et al (2015) The impact of weakly bound89Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection. Nucl Med Biol 42:360–368. https://doi.org/10.1016/j.nucmedbio.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  13. Krasikova RN, Aliev RA, Kalmykov SN (2016) The next generation of positron emission tomography radiopharmaceuticals labeled with non-conventional radionuclides. Mendeleev Commun 26:85–94. https://doi.org/10.1016/j.mencom.2016.03.001

    Article  CAS  Google Scholar 

  14. Ciarmatori A, Cicoria G, Pancaldi D et al (2011) Some experimental studies on 89Zr production. Radiochim Acta 99:631–634. https://doi.org/10.1524/ract.2011.1822

    Article  CAS  Google Scholar 

  15. Degering D, Unterricker S, Stolz W (1988) Excitation function of the 89Y(d,2n)89Zr reaction. J Radioanal Nucl Chem Lett 127(1):7–11

    Article  CAS  Google Scholar 

  16. Kandil SA, Scholten B, Saleh ZA et al (2007) A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88 Zr and 89 Zr in proton induced reactions on yttrium. J Radioanal Nucl Chem 274:45–52. https://doi.org/10.1007/s10967-006-6892-2

    Article  CAS  Google Scholar 

  17. Zweit J, Downey S, Sharma HL (1991) Production of no-carrier-added zirconium-89 for positron emission tomography. Int J Radiat Appl Instrum Part A Appl Radiat Isot 42:199–201. https://doi.org/10.1016/0883-2889(91)90074-B

    Article  CAS  Google Scholar 

  18. Kasbollah A, Eu P, Cowell S, Deb P (2013) Review on production of 89Zr in a medical cyclotron for PET radiopharmaceuticals. J Nucl Med Technol 41:35–41. https://doi.org/10.2967/jnmt.112.111377

    Article  PubMed  Google Scholar 

  19. Perk LR, Visser OJ, Stigter-Van Walsum M et al (2006) Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345. https://doi.org/10.1007/s00259-006-0160-0

    Article  CAS  PubMed  Google Scholar 

  20. Pandya DN, Pailloux S, Tatum D et al (2015) Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem Commun 51:2301–2303. https://doi.org/10.1039/C4CC09256B

    Article  CAS  Google Scholar 

  21. Meshkini A, Oveisi H (2017) Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells. Colloids Surf. B Biointerfaces 158:319–330. https://doi.org/10.1016/j.colsurfb.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Medina C, Tang J, Abdel-Atti D et al (2015) PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J Nucl Med 56:1272–1277. https://doi.org/10.2967/jnumed.115.158956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perez-Medina C, Abdel-Atti D, Zhang Y et al (2014) A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. J Nucl Med 55:1706–1711. https://doi.org/10.2967/jnumed.114.141861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li N, Yu Z, Pham T et al (2017) A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. Int J Nanomed 12:3281–3294. https://doi.org/10.2147/IJN.S134379

    Article  CAS  Google Scholar 

  25. Zhao Y, Shaffer TM, Das S et al (2017) Near-infrared quantum dot and 89 Zr dual-labeled nanoparticles for in vivo Cerenkov imaging. Bioconjug Chem 28:600–608. https://doi.org/10.1021/acs.bioconjchem.6b00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karmani L, Labar D, Valembois V et al (2013) Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89 Zr-labeled cetuximab in mice. Contrast Media Mol Imaging 8:402–408. https://doi.org/10.1002/cmmi.1539

    Article  CAS  PubMed  Google Scholar 

  27. Cheng L, Kamkaew A, Shen S et al (2016) Facile preparation of multifunctional WS2/WOx nanodots for chelator-free 89 Zr-labeling and in vivo PET imaging. Small 12:5750–5758. https://doi.org/10.1002/smll.201601696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolmas J, Krukowski S, Laskus A, Jurkitewicz M (2016) Synthetic hydroxyapatite in pharmaceutical applications. Ceram Int 42:2472–2487. https://doi.org/10.1016/j.ceramint.2015.10.048

    Article  CAS  Google Scholar 

  29. Orlova MA, Nikolaev AL, Trofimova TP et al (2019) Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides. Bull Russ State Med Univ. https://doi.org/10.24075/brsmu.2018.075

    Article  Google Scholar 

  30. Vasiliev AN, Severin A, Lapshina E et al (2017) Hydroxyapatite particles as carriers for 223Ra. J Radioanal Nucl Chem 311:1503–1509. https://doi.org/10.1007/s10967-016-5007-y

    Article  CAS  Google Scholar 

  31. Severin AV, Pankratov DA (2016) Synthesis of nanohydroxyapatite in the presence of iron(III) ions. Russ J Inorg Chem 61:265–272. https://doi.org/10.1134/s0036023616030190

    Article  CAS  Google Scholar 

  32. Melikhov IV, Komarov VF, Severin AV (2000) Two-dimensional crystal hydroxyapatite. Rep Russ Acad Sci 373:355 (In Russian)

    CAS  Google Scholar 

  33. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  34. Panov AD (1997) Packet of programs of spectra processing SPRO and programming language SL. Prepr Inst At Energy, Moscow, IAE-6019/15 31

  35. Nemoshkalenko VV (1976) Electron spectroscopy of crystals. Naukova Du, Moscow

    Google Scholar 

  36. Sosulnikov MI, Teterin YA (1992) X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates. J Electron Spectros Relat Phenomena 59:111–126. https://doi.org/10.1016/0368-2048(92)85002-O

    Article  CAS  Google Scholar 

  37. Maslakov KI, Livshits TS, Lapina MI et al (2007) An X-ray photoelectron study of the (Ca2.5Th0.5)Zr2Fe3O12, (Ca1.5GdTh0.5)(ZrFe)Fe3O12, and (Ca2.5Ce0.5)Zr2Fe3O12 ceramics with a garnet structure. Radiochemistry 49:33–40. https://doi.org/10.1134/s1066362207010067

    Article  Google Scholar 

  38. Nefedov VI (1985) X-ray spectroscopy of chemical compounds. Himiya, Moscow

    Google Scholar 

  39. Trzhaskovskaya MB, Yarzhemsky VG (2018) Dirac–Fock photoionization parameters for HAXPES applications. At Data Nucl Data Tables 119:99–174. https://doi.org/10.1016/j.adt.2017.04.003

    Article  CAS  Google Scholar 

  40. Smith DK, Newkirk HW (1965) The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallogr 18:983–985

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Lomonosov Moscow State University Program of Development for providing access to the XPS facility. The work was partially supported by the RFBR Grants 18-33-00649 and 17-03-00277a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri A. Teterin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teterin, Y.A., Kazakov, A.G., Teterin, A.Y. et al. The study of Zr adsorption on nanodispersed hydroxyapatite: X-ray photoelectron study. J Radioanal Nucl Chem 321, 341–347 (2019). https://doi.org/10.1007/s10967-019-06586-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06586-7

Keywords

Navigation