Skip to main content
Log in

Gamma-radiation combined with tricycloazole to protect tempera paintings in ancient Egyptian tombs (Nile Delta, Lower Egypt)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Eight out of 46 strains of Streptomyces isolated from mural paintings in the Tell Basta and Tanis tombs were exposed to various doses of gamma radiation (5, 10, 15, 20, 25 kGy). Tricyclazole (5, 7, 10 µg/mL) in dimethyl sulfoxide (DMSO) at 10 µg/mL completely inhibited melanin production in Streptomyces spp. after their gamma irradiation to sub-lethal doses. FT/IR spectra proved that the gypsum support, the binding media (which consisted of Arabic gum, and animal glue), and pigments all had withstood the doses up to 25 kGy, with except vermillion showed slight change. No effect of gamma irradiation up to 25 kGy on gypsum support was detected, so gamma irradiation could be considered a safe method for decontamination of biodeteriorated cultural heritage objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sakr AA, Ghaly MF, Ali MF, Abdel Haleim MF (2013) Biodeterioration of binding media in tempera paintings by Streptomyces isolated from some ancient Egyptian tombs. Afr J Biotech 12(1644):1656

    Google Scholar 

  2. Lucas A, Harris JR (1962) Ancient Egyptian materials and industries. In: Arnold E, 4th edN, London, p 523, ISBN 1854170465

  3. Abdel-Haliem MEF, Ali MF, Ghaly MF, Sakr AA (2013) Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains isolated from paintings of ancient Egyptian tombs. J Cult Heritage 14:45–50

    Article  Google Scholar 

  4. Abdel-Haliem MEF, Sakr AA, Ali MF, Ghaly MF, Sohlenkamp C (2013) Characterization of Streptomyces isolates causing color changes of mural paintings in ancient Egyptian tombs. Microbiol Res 168:428–437

    Article  CAS  PubMed  Google Scholar 

  5. Trandafir L, Zorila FL, Alexandru M, Ene M, Constantin M, Alistar A, Cutrubinis M, Iordache V, Stanculescu RI (2014) Radioresistance of biodegradation fungi and its importance in establishing the decontamination dose, ICAMS 2014. In: 5th international conference on advanced materials and systems, pp 561–566

  6. Nunes I, Mesquita N, Verde SC, Carolino MM, Portugal A, Botelho ML (2012) Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiat Phys Chem 88:82–89

    Article  CAS  Google Scholar 

  7. Nunes I, Mesquita N, Verde SC, Trigo MJ, Ferreira A, Carolino MM, Portugal A, Botelho ML (2012) Gamma radiation effects on physical properties of parchment documents: assessment of D max. Radiat Phys Chem 81:1943–1946

    Article  CAS  Google Scholar 

  8. Sterflinger K, Pinar G (2013) Microbial deterioration of cultural heritage and works of art- tilting at windmills? Appl Microbiol Biotechnol Appl Microbiol Biotechnol 97:9637–9646

    Article  CAS  PubMed  Google Scholar 

  9. Ramière R (2002) La désinfection des biens culturels par irradiation gamma. In: Marie-France Roquebert, Éditeur scientifique, Les contaminants biologiques des biens culturels, Elsevier, Paris, pp 291–293

  10. Gonzalez M, Calvo A, Kairiyama E (2002) Gammaradiationfor preservation of biologically damaged paper. Radiat Phys Chem 63:263–265

    Article  CAS  Google Scholar 

  11. Magaudda G (2004) The recovery of biodeteriorated books and archive documents through gamma radiation: some considerations on the results achieved. J Cult Heritage 5:113–118

    Article  Google Scholar 

  12. Choi JI, Chung YJ, Kang DI, Lee KS, Lee JW (2012) Effect or irradiation on disinfection and mechanical properties of Korean traditional paper Hanji. Radiat Phys Chem 81:1051–1054

    Article  CAS  Google Scholar 

  13. Nugari MP, Salvadori O (2003) Biodeterioration control of cultural heritage: methods and products. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage, p 233, ISBN 90-5809-555-X

  14. Geba M, Lisa G, Ursescu CM, Olaru A, Spiridon I, Leon AL, Stanculescu I (2014) Gamma irradiation of protein-based textiles for historical collections decontamination. J Therm Anal Calorim 118:977–985

    Article  CAS  Google Scholar 

  15. Severiano LC, Lahr FA, Bardi MA, Machado LDB (2011) Evaluation of the effects of gamma radiation on thermal properties of wood species used in Brazilian artistic and cultural heritage. J Therm Anal Calorim 106:783–786

    Article  CAS  Google Scholar 

  16. Bratu E, Moise IV, Cutrubinis M, Negut DC, Virgolici M (2009) Archives decontamination by gamma irradiation. Nukleonika 54:77–84

    CAS  Google Scholar 

  17. Horakova H, Martinek F (1984) Disinfection of archive documents by ionizing radiation. Restaurator 6:205–216

    CAS  Google Scholar 

  18. Ramière Q, Tran R (1989) Nucleart: nuclear techniques applied to art. Nucl Europe 7:50

    Google Scholar 

  19. Magaudda G, Adamo M, Pasquali A, Rossi G (2000) The effect of ionizing gamma ray radiation on the biology of the Periplaneta Americana. Restaurator 21:41–54

    Google Scholar 

  20. Sakr AL, Ghaly MF, Ali MF (2013) The use of gamma irradiation in the sterilization of Streptomyces colonizing the tempra paintings in ancient Egyptian tombs. Int J Conserv Sci 4(3):283–294

    Google Scholar 

  21. Tudor D (2013) Fungal pigment formation in wood substrate. Ph.D. Thesis, Faculty of Forestry, University of Toronto, p 21

  22. Dufosse L, Galaupa P, Yaronb A, Arad SM, Blancc P, Murthyd NC, Ravishankar GA (2005) Microorganisms and micro algaeas sources of pigments for food use: a scientific oddity oran industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  23. Sakr AA, Ali MF, Ghaly MF, Abdel Haliem MEF (2012) Discoloration of ancient Egyptian mural paintings by Streptomyces strains and methods of its removal. Int J Conserv Sci 3:249–258

    CAS  Google Scholar 

  24. Kogej T, Wheeler MH, Rizner TL, Gunde-Cimerman N (2004) Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209

    Article  CAS  PubMed  Google Scholar 

  25. Diakumaku E, Gourbushina A, Krumbein W, Panina L, Soukharjevski S (1995) Black fungi in marble and limestones—an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304

    Article  CAS  Google Scholar 

  26. Lazarovits G, Stoessl A (1988) Tricyclazole induces melanin shunt products and inhibits altersolanol A accumulation by Alternaria solani. Pestic Biochem Physiol 31(1):36–45

    Article  CAS  Google Scholar 

  27. Goltz D, Mcclelland J, Schellenberg A, Attas M, Cloutis E, Collins C (2003) Spectroscopic studies on the darkening of lead white. Appl Spectrosc 57(11):1393–1398

    Article  CAS  PubMed  Google Scholar 

  28. Manea MM, Negut CD, Stanculescu IR, Ponta CC (2012) Irradiation effects on canvas oil painting: spectroscopic observations. Radiat Phys Chem 81:1595–1599

    Article  CAS  Google Scholar 

  29. Aziz N, El Fouly M, Abou Shady M, Moussa L (1997) Effect of gamma radiation on the survival of fungal and actinomycetal florae contaminating medicinal plants. Appl Radiat Isot 48:71–76

    Article  CAS  PubMed  Google Scholar 

  30. Klassen NV, Short KR, Seuntjens J, Ross CK (1999) Fricke dosimetry: the difference between G (Fe3+) for Co60 gamma rays and high- energy x- rays. Phys Med Biol 44:1609–1624

    Article  CAS  PubMed  Google Scholar 

  31. Kellerer AΜ (1974) Statistical and biophysical aspects of the survival curve, in cell survival after low doses of radiation: theoretical and clinical implications. In: Alper T (ed) Proceedings of the sixth L Η Gray conference, held at Bedford College, London 16–21 September 1974, pp 69–77

  32. Nagatsu C, Matsuyama A (1970) Changes in radiosensitivity of Streptomyces cacaoz Spores during germination. Agric Biol Chem 34(6):860–869

    Article  CAS  Google Scholar 

  33. Shaaban MT, El-Sabbagh SM, Alam A (2013) Studies on an actinomyceteproducing melanin pigment inhibiting Aflatoxin B1 production by Aspergillusflavus. Life Sci J 10:1437–1448

    Google Scholar 

  34. Stuart BH (2007) Analytical techniques in materials conservation. Wiley, Hoboken, p 158

    Book  Google Scholar 

  35. Ciurczak EM (1994) Infrared sample preparation techniques. Spectroscopy 9:2–3

    Google Scholar 

  36. Katušin-Ražem B, Braun M (2009) Irradiation treatment for the protection and conservation of cultural heritage artifacts in Croatia. Radiat Phys Chem 78:729–731

    Article  CAS  Google Scholar 

  37. Petushkova J, Lyalikova N, Nichiporov F (1988) Effect of ionizing radiation on monument deteriorating microorganisms. J Radioanal Nucl Chem 125:367–371

    Article  CAS  Google Scholar 

  38. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa M (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the Genus Deinococcus obtained from a single soil sample. Appl Environ Microb 71:5225–5235

    Article  CAS  Google Scholar 

  39. Pointing S, Jones E, Jones A (1998) Decay prevention in waterlogged archaeological wood using gamma irradiation. Int Biodeterior Biodegrad 42:17–24

    Article  Google Scholar 

  40. Rizzo M, Machado L, Borrely S, Sampa M (2002) Effects of gamma rays on a restored painting from the XVII century. Radiat Phys Chem 63:259–262

    Article  CAS  Google Scholar 

  41. Yoon M, Chung Y, Kang D, Kim I, Lee Y, Lee J, Choi J (2011) Study of the optimal gamma irradiation for the control of fungi on wood cultural property. J Conserv Sci 27:127–134

    Google Scholar 

  42. Silva TP, Figueiredo MO, Barreiros MA, Prudêncio MI (2013) Decorative 18th century blue-and-white Portuguese tile panels: a type-case of environmental degradation. J Mater 2013:1–6

    Google Scholar 

  43. Aquino KA (2012) Sterilization by gamma irradiation. In: Feriz Adrovic (ed) Gamma radiation, pp 171–206

  44. Starratt AN, Ross LM (2002) Lazarovits G (2002) 1,8-Dihydroxynaphthalene monoglucoside, a new metabolite of Sclerotinia sclerotiorum, and the effect of tricyclazole on its production. Can J Microbiol 48(4):320–325

    Article  CAS  PubMed  Google Scholar 

  45. Young ME, Alakomi HL, Fortune I, Gourbushina A, Krumbein W, Maxwell I, McCullagh C, Robertson P, Saarela M, Valero J, Vendrell M (2008) Development of biocidal treatment regime to inhibit biological growth on cultural heritage: BIODAM. Environ Geol 56:631–641

    Article  Google Scholar 

  46. Ibrahim SM, Mousa IM, Ibrahim MS (2014) Characterization of gamma irradiated plasticized carboxymethyl cellulose (CMC)/gum arabic (GA) polymer blends as absorbents for dyestuffs. Bull Mater Sci 37:603–608

    Article  CAS  Google Scholar 

  47. Derric MR, Stulik D, Landry JM (1999) Infrared spectroscopy in conservation science, Getty Conservation Institute, Los Angeles, p 235. ISBN 0892364696

  48. Negut CD, Bercu V, Duliu OG (2012) Defects induced by gamma irradiation in historical pigments. J Cult Heritage 13:397–403

    Article  Google Scholar 

  49. Manea MM, Moise IV, Virgolici M, Negut CD, Barbu O-H, Cutrubinis M, Fugaru V, Stanculescu IR, Ponta CC (2012) Spectroscopic evaluation of painted layer structural changes induced by gamma radiation in experimental models. Radiat Phys Chem 81:160–167

    Article  CAS  Google Scholar 

  50. Ponta CC, Havermans JB, Boutaine JL (2017) Disinfection of cultural artifacts using irradiation in uses of ionizing radiation for tangible cultural heritage objects, IAEA, pp 93–103

  51. Radepont M (2013) Understanding of chemical reactions involved in pigment discoloration, in particular in mercury sulfide (HgS) blackening, Ph.D. Thesis, Universiteit Antwerpen, France, pp 28–30

  52. Cotte M, Susini J, Metrich N, Moscato A, Gratziu C, Bertagnini A, Pagano M (2006) Blackening of pompeian cinnabar paintings: x-ray microspectroscopy analysis. Anal Chem 78:7484–7492

    Article  CAS  PubMed  Google Scholar 

  53. Da Pieve D, Hogan C, Lamoen D, Verbeeck J et al (2013) Casting light on the darkening of colors in historical paintings. Phys Rev Lett III 20:208302

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Elbashar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakr, A.A., Ghaly, M.F., Edwards, H.G.M. et al. Gamma-radiation combined with tricycloazole to protect tempera paintings in ancient Egyptian tombs (Nile Delta, Lower Egypt). J Radioanal Nucl Chem 321, 263–276 (2019). https://doi.org/10.1007/s10967-019-06580-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06580-z

Keywords

Navigation