Skip to main content
Log in

Polypropylene nonwoven fabric modified with oxime and guanidine for antibiofouling and highly selective uranium recovery from seawater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel adsorbent for antibiofouling and highly selective uranium recovery from seawater is developed in this work. Specifically, the polypropylene nonwoven fabric modified with oxime and guanidine was obtained by subsequent radiation-grafting, ring-opening and oximation reaction. The adsorbent demonstrates outstanding selectivity for uranium(VI) against other competing metal ions in real seawater. The antibacterial assay indicated the adsorbent has good antibacterial properties against Escherichia coli and Staphylococcus aureus. XPS spectra indicate that uranium(VI) is adsorbed on the non-woven through the interaction with multiple groups. This work shows that the sorbent may be a hopeful material for the extraction of uranium from seawater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davies RV, Kennedy J, Mcilroy RW, Spence R, Hill KM (1964) Extraction of uranium from sea water. Nature 203:1110–1115

    Article  Google Scholar 

  2. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013

    Article  CAS  PubMed  Google Scholar 

  3. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007

    Article  CAS  Google Scholar 

  4. Macfarlane AM (2011) The overlooked back end of the nuclear fuel cycle. Science 333:1225–1226

    Article  CAS  PubMed  Google Scholar 

  5. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J, Guo J, Liao X, Shi B (2019) Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ Sci 12:607–614

    Article  CAS  Google Scholar 

  6. Zhu J, Liu Q, Liu J, Chen R, Zhang H, Yu J, Zhang M, Li R, Wang J (2018) Novel ion-imprinted carbon material induced by hyperaccumulation pathway for the selective capture of uranium. ACS Appl Mater Interfaces 10:28877–28886

    Article  CAS  PubMed  Google Scholar 

  7. Husnain SM, Kim HJ, Um W, Chang YY, Chang YS (2017) Superparamagnetic adsorbent based on phosphonate grafted mesoporous carbon for uranium removal. Ind Eng Chem Res 56:9821–9830

    Article  CAS  Google Scholar 

  8. Singhal P, Jha SK, Pandey SP, Neogy S (2017) Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. J Hazard Mater 335:152–161

    Article  CAS  PubMed  Google Scholar 

  9. Qian Y, Yuan Y, Wang H, Liu H, Zhang J, Shi S, Guo Z, Wang N (2018) Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J Mater Chem A 6:24676–24685

    Article  CAS  Google Scholar 

  10. Yuan Y, Yang Y, Ma X, Meng Q, Wang L, Zhao S, Zhu G (2018) Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv Mater 30:1706507

    Article  CAS  Google Scholar 

  11. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30:1705479

    Article  CAS  Google Scholar 

  12. Das S, Brown S, Mayes RT, Janke CJ, Tsouris C, Kuo LJ, Gill G, Dai S (2016) Novel poly(imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135

    Article  CAS  Google Scholar 

  13. Wu F, Ning P, Ye G, Sun T, Wang Z, Yang S, Wang W, Huo X, Lu Y, Chen J (2017) Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-inspired sorbents. Environ Sci Technol 51:4606–4614

    Article  CAS  PubMed  Google Scholar 

  14. Das S, Mayes RT, Oyola Y, Janke CJ, Kuo LJ, Gill GA, Wood J, Dai S (2015) Extracting uranium from seawater: promising ai series adsorbents. Ind Eng Chem Res 55:4103–4109

    Article  CAS  Google Scholar 

  15. Wang D, Song J, Wen J, Yuan Y, Liu Z, Lin S, Wang H, Wang H, Zhao S, Zhao X, Fang M, Lei M, Li B, Wang N, Wang X, Wu H (2018) Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent. Adv Energy Mater 8:1802607

    Article  CAS  Google Scholar 

  16. Singhal P, Jha SK, Vats BG, Ghosh HN (2017) Electron-Transfer-Mediated uranium detection using quasi-type II core-shell quantum dots: insight into mechanistic pathways. Langmuir 33:8114–8122

    Article  CAS  PubMed  Google Scholar 

  17. Singhal P, Pulhani V (2019) Effect of ligand concentration, dilution, and excitation wavelength on the emission properties of CdSe/CdS core shell quantum dots and their implication on detection of uranium. ChemistrySelect 4:4528–4537

    Article  CAS  Google Scholar 

  18. Hua M, Yang S, Ma J, He W, Kuang L, Hua D (2018) Highly selective and sensitive determination of uranyl ion by the probe of CdTe quantum dot with a specific size. Talanta 190:278–283

    Article  CAS  PubMed  Google Scholar 

  19. Wen J, Huang Z, Hu S, Li S, Li W, Wang X (2016) Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection. J Hazard Mater 318:363–370

    Article  CAS  PubMed  Google Scholar 

  20. Xiang Y, Wang Z, Xing H, Wong N, Lu Y (2010) Label-free fluorescent functional DNA sensors using unmodified DNA: a vacant site approach. Anal Chem 82:4122–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shu X, Wang Y, Zhang S, Huang L, Wang S, Hua D (2015) Determination of trace uranyl ion by thermoresponsive porphyrin-terminated polymeric sensor. Talanta 131:198–204

    Article  CAS  PubMed  Google Scholar 

  22. Brown S, Yue Y, Kuo LJ, Mehio N, Li M, Gill G, Tsouris C, Mayes RT, Saito T, Dai S (2016) Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind Eng Chem Res 55:4139–4148

    Article  CAS  Google Scholar 

  23. Ivanov AS, Leggett CJ, Parker BF, Zhang Z, Arnold J, Dai S, Abney CW, Bryantsev VS, Rao L (2017) Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nat Commun 8:1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leggett CJ, Parker BF, Teat SJ, Zhang Z, Dau PD, Lukens WW, Peterson SM, Ajp C, Warner MG, Gibson JK (2016) Structural and spectroscopic studies of a rare non-oxido V(V) complex crystallized from aqueous solution. Chem Sci 7:2775–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vukovic S, Hay BP (2013) De Novo structure-based design of bis-amidoxime uranophiles. Inorg Chem 52:7805–7810

    Article  CAS  PubMed  Google Scholar 

  26. Xu M, Han X, Hua D, Xu M, Han X, Hua D, Xu M, Han X, Hua D, Xu M (2017) Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. J Mater Chem A 5:12278–12284

    Article  CAS  Google Scholar 

  27. Hu J, Ma H, Xing Z, Liu X, Xu L, Li R, Lin C, Wang M, Li J, Wu G (2015) Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind Eng Chem Res 55:4118–4124

    Article  CAS  Google Scholar 

  28. Park J, Gill GA, Strivens JE, Kuo LJ, Jeters R, Avila A, Wood J, Schlafer NJ, Janke CJ, Miller EA (2016) Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents. Ind Eng Chem Res 55:4328–4338

    Article  CAS  Google Scholar 

  29. Zhang H, Zhang L, Han X, Kuang L, Hua D (2018) Guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric for potential uranium seawater extraction with antifouling property. Ind Eng Chem Res 57:1662–1670

    Article  CAS  Google Scholar 

  30. Zhou ZX, Wei DF, Guan Y, Zheng AN, Zhong JJ (2010) Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J Appl Microbiol 108:898–907

    Article  CAS  PubMed  Google Scholar 

  31. Wen J, Li Q, Li H, Chen M, Hu S, Cheng H (2018) Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(VI) recovery. Ind Eng Chem Res 57:1826–1833

    Article  CAS  Google Scholar 

  32. Zhang F, Zhang H, Chen R, Liu Q, Liu J, Wang C, Sun Z, Wang J (2019) Mussel-inspired antifouling magnetic activated carbon for uranium recovery from simulated seawater. J Colloid Interface Sci 534:172–182

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Zhao XS, Li B, Bai CY, Li Y, Wang L, Wen R, Zhang MC, Ma LJ, Li SJ (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104

    Article  CAS  PubMed  Google Scholar 

  34. Li P, Poon YF, Li WF, Zhu HY, Yeap SH, Cao Y, Qi XB, Zhou CC, Lamrani M, Beuerman RW, Kang ET, Mu YG, Li CM, Chang MW, Leong SSJ (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10:149–156

    Article  CAS  PubMed  Google Scholar 

  35. Tian B, Wang XY, Zhang LN, Shi FN, Zhang Y, Li SX (2016) Preparation of PVDF anionic exchange membrane by chemical grafting of GMA onto PVDF macromolecule. Solid State Ionics 293:56–63

    Article  CAS  Google Scholar 

  36. Xin Z, Du S, Zhao C, Chen H, Sun M, Yan S, Luan S, Yin J (2016) Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Appl Surf Sci 365:99–107

    Article  CAS  Google Scholar 

  37. Yang S, Qian J, Kuang L, Hua D (2017) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Interfaces 9:29337–29344

    Article  CAS  PubMed  Google Scholar 

  38. Pan HB, Wai CM, Kuo LJ, Gill G, Tian G, Rao L, Das S, Mayes RT, Janke CJ (2017) Bicarbonate elution of uranium from amidoxime-based polymer adsorbents for sequestering uranium from seawater. Chemistryselect 2:3769–3774

    Article  CAS  Google Scholar 

  39. Chavan SP, Soni P (2004) A facile deprotection of oximes using glyoxylic acid in an aqueous medium. Tetrahedron Lett 45:3161–3162

    Article  CAS  Google Scholar 

  40. Song W, Liu M, Hu R, Tan X, Li J (2014) Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chem Eng J 246:268–276

    Article  CAS  Google Scholar 

  41. Zhang M, Gao Q, Yang C, Pang LJ, Wang HL, Li H, Li R, Xu L, Xing Z, Hu J (2016) Preparation of amidoxime-based nylon 66 fibers for removing uranium from low concentration aqueous solutions and simulated nuclear industry effluents. Ind Eng Chem Res 55:10523–10532

    Article  CAS  Google Scholar 

  42. Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on bacterium-derived carbon nanofibers. Environ Sci Technol 50:4459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (U1867206), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Key Laboratory of Radiation Medicine and Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoben Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Ji, G., Cai, S. et al. Polypropylene nonwoven fabric modified with oxime and guanidine for antibiofouling and highly selective uranium recovery from seawater. J Radioanal Nucl Chem 321, 323–332 (2019). https://doi.org/10.1007/s10967-019-06578-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06578-7

Keywords

Navigation