Skip to main content
Log in

Distribution of activity concentration and dose rates in selected coastal areas on western and eastern Black Sea

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactivity measurements were performed, at the east (Georgia) and west (Romania) part of the Black Sea, for natural radionuclides and 137Cs in collected water and sediment samples using lab-based and in situ gamma-ray spectrometry. The activity concentrations of 137Cs at Georgian area in the sediment and seawater ranged between 20 to 50 Bq kg−1 and 8 to 25 Bq m−3, respectively while at the Romanian area the activity concentration ranged from 10 to 30 Bq kg−1 and 3 to 15 Bq m−3, respectively. The activity concentration values of 7Be at the Georgian area reached values up to (30 ± 4) Bq kg−1. The induced dose rates to marine organisms in both areas estimated by the ERICA assessment tool were much lower than the screening value of 10 μGy h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsabaris C, Scholten J, Karageorgis AR, Comanducci J-F, Georgopoulos D, Liong Wee Kwong L, Patiris DL, Papathanassiou E (2010) Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean Sea. Radiat Prot Dosim 142:273–281

    Article  CAS  Google Scholar 

  2. Tsabaris C, Patiris DL, Karageorgis AP, Eleftheriou G, Papadopoulos VP, Georgopoulos D, Papathanassiou E, Povinec PP (2012) In-situ radionuclide characterization of a submarine groundwater discharge site at Kalogria Bay, Stoupa, Greece. J Environ Radioact 108:50–59

    Article  CAS  PubMed  Google Scholar 

  3. Tsabaris C, Zervakis V, Kaberi H, Delfanti R, Georgopoulos D, Lampropoulou M, Kalfas CA (2014) 137Cs vertical distribution at the deep basins of the North and Central Aegean Sea, Greece. J Environ Radioact 132:47–56

    Article  CAS  PubMed  Google Scholar 

  4. Buesseler KO, Livingston HD (1996) Natural and man-made radionuclides in the Black Sea. In: Guéguéniat P, Germain P, Métivier H (eds) Radionuclides in the oceans inputs and inventories. Les editions de physique, Les Ulis, pp 199–217

    Google Scholar 

  5. Tsabaris C, Kapsimalis V, Eleftheriou G, Laubenstein M, Kaberi H, Plastino W (2012) Determination of 137Cs activities in surface sediments and derived sediment accumulation rates in Thessaloniki Gulf, Greece. Environ Earth Sci 67:833–843

    Article  CAS  Google Scholar 

  6. Eleftheriou G, Tsabaris C, Papageorgiou DK, Patiris DL, Androulakaki EG, Pappa FK (2018) Radiometric dating of sediment cores from aquatic environments of north-east Mediterranean. J Radioanal Nucl Chem 316:655–671

    Article  CAS  Google Scholar 

  7. Botwe BO, Abril JM, Schirone A, Barsanti M, Delbono I, Delfanti R, Nyarko E, Lens PNL (2017) Settling fluxes and sediment accumulation rates by the combined use of sediment traps and sediment cores in Tema Harbour (Ghana). Sci Total Environ 609:1114–1125

    Article  CAS  PubMed  Google Scholar 

  8. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation, united nations scientific committee on the effects of atomic radiation. Report to General Assembly with Scientific Annexes. United Nations, New York

  9. Livingston HD, Buesseler KO, Izdar E, Konuk T (1988) Characteristics of chernobyl fallout in the southern Black Sea. In: Guary JC, Guegueniat P, Pentreath RJ (eds) Radionuclides: a tool for oceanography. Elsevier, Essex, pp 204–216

    Google Scholar 

  10. Polikarpov GG, Livingston HD, Kulebakina LG, Buesseler KO, Stokozov NA, Casso SA (1992) Inflow of Chernobyl 90Sr to the Black Sea from the Dnieper River. Estuar Coast Shelf Sci 34:315–320

    Article  CAS  Google Scholar 

  11. Egorov VN, Polikarpov GG, Gulin SB, Osvath I, Stokozov NA Lazorenko GE (2006) XX years of radioecological response studies of the Black Sea to the Chernobyl NPP accident: a grand total. In: Proceedings of the first biannual scientific conference Black Sea ecosystem 2005 and Beyond, 8–10 May 2006, Istanbul, pp 333

  12. Voitsekhovych OV, Kanivets VV, Laptev GV (2006) Current state of radioactivity studies in the Ukrainian Hydrometeorological Institute (UHMI) 2002–2005. Progress report to the IAEA. Ukrainian Hydrometeorological Institute, Kiev

  13. Vakulovsky SM, Krasnopevtcev UV, Nikitin AI, Chumichev VB (1982) Distribution of Cs-137 and Sr-90 between water and sediments in the Black Sea in 1977. Oceanology 22(6):712–715 (in Russian)

    Google Scholar 

  14. Buesseler KO, Livingston HD, Honjo S, Hay BJ, Manganini SJ, Degens E, Ittekkot V, Izdar E, Konuk T (1987) Chernobyl radionuclides in a Black Sea sediment trap. Nature 329:825–828

    Article  CAS  PubMed  Google Scholar 

  15. Osvath I, Dovlete C, Bologa A (1990) Radioactivity in the Romanian sector of the Black Sea. In: Proceedings of the international symposium on post-chernobyl environmental radioactivity studies in East-European countries, 17–19 September 1990, Kazimierz, pp 108–112

  16. Gulin SB, Egorov VN, Duka MS, Sidorov IG, Proskurnin VYu, Yu Mirzoyeva N, Bey ON, Gulina LV (2015) Deep-water profiling of 137Cs and 90Sr in the Black Sea A further insight into dynamics of the post-Chernobyl radioactive contamination. J Radioanal Nucl Chem 304(2):779–783

    Article  CAS  Google Scholar 

  17. International Atomic Energy Agency (IAEA) (2017) Country nuclear power profiles, 2017th edn. International Atomic Energy Agency, Vienna

    Google Scholar 

  18. Dovlete C, Osvath I, Sonoc S (2018) Pre and post-chernobyl environmental radioactivity in Romania: a review. In: Finkl C, Makowski C (eds) Diversity in coastal marine sciences. Coastal research library, vol 23. Springer, Cham, pp 203–220

    Chapter  Google Scholar 

  19. Osvath I, Dovlete C, Bologa A (1988) Artificial gamma emitters in Black Sea bottom water and sediment off the Danube Mouths in 1986–1987. Rapp Comm Int Mer Medit 31(2):307

    Google Scholar 

  20. Bologa AS, Apas M, Cociasu A, Cuingioglu E, Pecheanu I, Piescu V, Popa L (1999) Present level of contaminants in the Romanian Black Sea sector. In: International Atomic Energy Agency (IAEA) (ed) Marine pollution. IAEA-TECDOC-1094. International Atomic Energy Agency, Vienna, pp 58–63

    Google Scholar 

  21. Bologa AS, Patrascu V (1998) Radioactivity in the Romanian Black Sea sector: one decade after Chernobyl. In: Proceedings of the national seminar on public information on peaceful uses of nuclear energy (NUCInfo’98), vol 2, sec B: scientific and technical papers, 30 September–2 October 1998, Bucharest, pp 469–475

  22. Puscasu C, Dima D (2006) Assessment of marine radioactivity in the Romanian sector of the Black Sea. Report to the IAEA. Environmental Protection Agency, Constantza

  23. Nadareishvili KS, Tsitskishvili MS, Gachechiladze GA, Katamadze NM, Intskirveli LN, Kirtadze SR, Mandzhgaladze DN, Mosulishvili LM, Sanaya TG, Hazaradze RE, Chitanava RD, Shavdiya NN (1991) Effect of Chernobyl accident on radio ecological situation in the Caucasus. Paper 1: radionuclide echo of Chernobyl in Georgia. Radiat Stud 5:132–151

    Google Scholar 

  24. Mosulishvili LM, Shonia NI, Katamadze NM, Ginturi EI (1994) Radionuclides of Chernobyl etiology in the Republic of Georgia: kinetics of their accumulation and migration. Radiat Stud 6:252–262

    Google Scholar 

  25. Katamadze N, Mosulishvili L, Kuchava N, Eristavi D, Shonia N (1994) Dose of external irradiation of the population in Tbilisi region after Chernobyl accident. Radiat Stud 6:263–272

    Google Scholar 

  26. Pagava SV (2003) The study of radiation condition in coastal zone of Black Sea in the Chakvi-Sarpi region and adjacent water area. Soros Educ J Ecol 1:53–62

    Google Scholar 

  27. Kekelidze N, Jakhutashvili T, Tutberidze B, Tulashvili E, Akhalkatsishvili M, Mtsariashvili L (2017) Radioactivity of soils in Mtskheta-Mtianeti region (Georgia). Ann Agrar Sci 15:304–311

    Article  Google Scholar 

  28. Kekelidze N, Tutberidze B, Dvalashvili G, Kikava A, Mgeladze M (2018) Radioactivity of soil structures in the Black Sea coastal strip (Georgia). Int J Agric Environ Bio-res 3(2):80–92

    Google Scholar 

  29. Black Sea Commission (BSC) (2008) State of the environment of the Black Sea (2001–2006/7). In: Oguz T (ed). Publications of the commission on the protection of the Black Sea against pollution 2008–3, Istanbul

  30. Museliani T, Oniani J, Oniani T (2005) Pollution of Black Sea coastal waters on the territory of the West Georgia. Bull Georgian Acad Sci 171(1):180–181

    CAS  Google Scholar 

  31. Pagava S (2006) Report on the Black Sea environmental pollution by radioactivity, Georgia 2003–2005. In: Report to the IAEA. I. Javakhishvili Tbilisi State University, Tbilisi

  32. Tsabaris C, Bagatelas C, Dakladas Th, Papadopoulos CT, Vlastou R, Chronis GT (2008) An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl Radiat Isot 66:1419–1426

    Article  CAS  PubMed  Google Scholar 

  33. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA tool. J Environ Radioact 99:1371–1383

    Article  CAS  PubMed  Google Scholar 

  34. Seghedi A, Vaida M, Iordan M, Verniers J (2005) Paleozoic evolution of the Romanian part of the Moesian platform: an overview. Geol Belg 8:99–120

    Google Scholar 

  35. Georgiev G (2012) Geology and hydrocarbon systems in the western Black Sea. Turkish Journal of Earth Sciences 21:723–754

    CAS  Google Scholar 

  36. Melikadze G, Schubert M, Tsabaris C, Kapanadze N, Todadze M, Machaidze Z, Chankvetadze A (2013) Using environment tracers for investigation of submarin groundwater discharge. J Georgian Geophys Soc A: Physics of Solid Earth 16a:25–31

    Google Scholar 

  37. Buachidze IM (ed) (1970) Georgian SSR. Hydrogeology of USSR, vol 10. Nedra, Moscow (in Russian)

    Google Scholar 

  38. International Atomic Energy Agency (IAEA) (2003) Collection and preparation of bottom sediment samples for analysis of radionuclides and trace elements. IAEA-TECDOC-1360. International Atomic Energy Agency, Vienna

  39. Tsabaris C, Vlachos DS, Papadopoulos CT, Vlastou R, Kalfas CA (2005) Set up and application of an underwater Á-ray spectrometer for radioactivity measurements. Mediterr Mar Sci 6:35–40

    Article  Google Scholar 

  40. Bagatelas C, Tsabaris C, Kokkoris M, Papadopoulos CT, Vlastou R (2010) Determination of marine gamma activity and study of the minimum detectable activity (MDA) in 4pi geometry based on Monte Carlo simulation. Environ Monit Assess 165:159–168

    Article  CAS  PubMed  Google Scholar 

  41. Androulakaki EG, Kokkoris M, Tsabaris C, Eleftheriou G, Patiris DL, Pappa FK, Vlastou R (2016) In situ γ-ray spectrometry in the marine environment using full spectrum analysis for natural radionuclides. Appl Radiat Isot 114:76–86

    Article  CAS  PubMed  Google Scholar 

  42. Androulakaki EG, Tsabaris C, Eleftheriou G, Kokkoris M, Patiris DL, Pappa FK, Vlastou R (2016) Efficiency calibration for in situ γ-ray measurements on the seabed using Monte Carlo simulations: application in two different marine environments. J Environ Radioact 164:47–59

    Article  CAS  PubMed  Google Scholar 

  43. Tsabaris C, Eleftheriou G, Kapsimalis V, Anagnostou C, Vlastou R, Durmishi C, Kedhi M, Kalfas CA (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl Radiat Isot 65:445–453

    Article  CAS  PubMed  Google Scholar 

  44. Tzifas IT, Godelitsas A, Magganas A, Androulakaki E, Eleftheriou G, Mertzimekis TJ, Perraki M (2014) Uranium-bearing phosphatized limestones of NW Greece. J Geochem Explor 143:62–73

    Article  CAS  Google Scholar 

  45. Eleftheriou G, Tsabaris C, Androulakaki EG, Patiris DL, Kokkoris M, Kalfas CA, Vlastou R (2013) Radioactivity measurements in the aquatic environment using in situ and laboratory gamma-ray spectrometry. Appl Radiat Isot 822:68–278

    Google Scholar 

  46. Pappa FK, Tsabaris C, Patiris DL, Androulakaki EG, Eleftheriou G, Betsou C, Michalopoulou V, Kokkoris M, Vlastou R (2018) Historical trends and assessment of radionuclides and heavy metals in sediments near an abandoned mine, Lavrio, Greece. Environ Sci Pollut Res 25:30084–30100

    Article  CAS  Google Scholar 

  47. Gilmore GR (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, New York, pp 117–158

    Book  Google Scholar 

  48. Hosseini A, Thorring H, Brown JE, Saxen R, Ilus E (2008) Transfer of radionuclides in aquatic ecosystems default concentration ratios for aquatic biota in the Erica Tool. J Environ Radioact 99:1408–1429

    Article  CAS  PubMed  Google Scholar 

  49. Ulanovsky A, Prohl G (2006) A practical method for assessment of the dose conversion coefficients for aquatic biota. Radiat Environ Biophys 45:203–214

    Article  CAS  PubMed  Google Scholar 

  50. International Atomic Energy Agency (IAEA) (2004) Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical reports series no 422. International Atomic Energy Agency, Vienna

  51. Schubert M, Knöller K, Stollberg R, Mallast U, Ruzsa G, Melikadze G (2017) Evidence for Submarine Groundwater Discharge into the Black Sea—investigation of two dissimilar geographical settings. Water 9(7):468

    Article  CAS  Google Scholar 

  52. Pătraşcu V, Mărgineanu RM, Blebea-Apostu AM, Diaconeasa DI, Gomoiu MC (2018) Gamma-ray radionuclides in sediments from Mamaia Beach on the Romanian Black Sea Coast. In: Finkl C, Makowski C (eds) Diversity in coastal marine sciences. Coastal research library, vol 23. Springer, Cham, pp 233–239

    Chapter  Google Scholar 

  53. Chiroşca G, Mihailov ME, Ţugulan CL, Chiroşca AV (2018) Radionuclides assessment for the Romanian Black Sea Shelf. In: Finkl C (ed) Diversity in coastal marine sciences. Coastal research library, vol 23. Springer, Cham, pp 221–232

    Chapter  Google Scholar 

  54. Tsabaris C, Ballas D (2005) On line gamma-ray spectrometry at open sea. Appl Radiat Isot 62:83–89

    Article  CAS  PubMed  Google Scholar 

  55. Poulos SE (2009) Origin and distribution of the terrigenous component of the unconsolidated surface sediment of the Aegean floor: a synthesis. Cont Shelf Res 29:2045–2060

    Article  Google Scholar 

  56. Baltas H, Kiris E, Dalgic G, Cevik U (2016) Distribution of 137Cs in the Mediterranean mussel (Mytilus galloprovincialis) in Eastern Black Sea Coast of Turkey. Mar Pollut Bull 107(1):402–407

    Article  CAS  PubMed  Google Scholar 

  57. Baltas H, Sirin M, Dalgic G, Cevik U (2018) An overview of the ecological half-life of the 137Cs radioisotope and a determination of radioactivity levels in sediment samples after Chernobyl in the Eastern Black Sea, Turkey. J Mar Syst 177:21–27

    Article  Google Scholar 

  58. Kalandadze B, Tulashvili E, Dvalashvili G, Kikava A, Merab M (2018) Radioactivity of soil structures in the Black Sea coastal strip (Georgia). Int J Agric Environ Bio-Res 3(2):80–92

    Google Scholar 

  59. International Atomic Energy Agency (IAEA) (2014) The environmental behaviour of radium, revised edn. Technical reports series no 476. International Atomic Energy Agency, Vienna

  60. Charette MA, Moore WS, Burnett WC (2008) Uranium- and Thorium-series nuclides as tracers of submarine groundwater discharge. In: Krishnaswami S, Cochran JK (eds) Radioactivity in the environment, vol 13. Elsevier, Hungary, pp 155–188

    Google Scholar 

  61. Lu X (2007) A note on removal of the compaction effect for the 210Pb method. Appl Radiat Isot 65:142–146

    Article  CAS  PubMed  Google Scholar 

  62. Ruiz-Fernandez AC, Hillaire-Marcel C (2009) 210Pb-derived ages for the reconstruction of terrestrial contaminant history into the Mexican Pacific coast: potential and limitations. Mar Pollut Bull 59:134–145

    Article  CAS  PubMed  Google Scholar 

  63. Larsson CM (2008) An overview of the ERICA integrated approach to the assessment and management of environmental risks from ionising contaminants. J Environ Radioact 99:1364–1370

    Article  CAS  PubMed  Google Scholar 

  64. International Atomic Energy Agency (IAEA) (1992) Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards. Technical Reports Series no 332. International Atomic Energy Agency, Vienna

  65. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1996) Effects of radiation on the environment. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, annex 1. United Nations, New York

Download references

Acknowledgements

This study was a part of the research project SGD Black Sea (ERA,NET) and the EU project BlackSeaHazNet within the FP7 framework founded by the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tsabaris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsabaris, C., Eleftheriou, G., Patiris, D.L. et al. Distribution of activity concentration and dose rates in selected coastal areas on western and eastern Black Sea. J Radioanal Nucl Chem 321, 169–181 (2019). https://doi.org/10.1007/s10967-019-06562-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06562-1

Keywords

Navigation