Skip to main content
Log in

Development and evaluation of a plastic scintillating resin for radioactive tin determination

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the next few years, a large number of nuclear facilities will be closed. This will involve the measurement of large amounts of nuclear wastes during the decommissioning process. This large amount of samples to be decommissioned will require the use of rapid and economical techniques. In this sense, PS resins appear as a good option since they unify separation and measurement preparation in a single step, reducing time and reagents. The objective of this study was to develop a PS resin for the measurement of radioactive tin, especially 126Sn, one of the main responsible of the dose in the future. The study optimizes the PS resin preparation (TBP is used as the extractant, Crosslinked plastic scintillator as the support and an 80% extractant solution for the impregnation) and the tin separation medium (2 M HCl) from described interferences. The detection efficiency was established using a calibration based on the radionuclide energy. Finally, a real sample, coming from the reprocessing of fission products, was analyzed obtaining quantitative retention and quantification errors lower than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. IAEA (2009) IAEA nuclear energy series No. NW-T-1.20 disposal approaches for long lived low and intermediate level radioactive waste. Viena

  2. Monken-Fernandes H, Michal V (2019) A brief overview of decommissioning and environmental remediation over the last 20 years. J Environ Radioact 196:150–152. https://doi.org/10.1016/j.jenvrad.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Goudeau V, Daniel B, Dubot D (2019) Mobile laboratories: an innovative and efficient solution for radiological characterization of sites under or after decommissioning. J Environ Radioact 196:194–198. https://doi.org/10.1016/j.jenvrad.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Hou X (2007) Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J Radioanal Nucl Chem 273:43–48. https://doi.org/10.1007/s10967-007-0708-x

    Article  CAS  Google Scholar 

  5. Hou X (2018) Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. Springer, Berlin

    Book  Google Scholar 

  6. Dulanská S, Bilohuščin J, Remenec B et al (2015) Determination of 126Sn in radioactive waste using TEVA® resin and gamma spectrometry. J Radioanal Nucl Chem 304:1093–1097. https://doi.org/10.1007/s10967-015-3969-9

    Article  CAS  Google Scholar 

  7. Silliková V, Dulanská S (2017) Sequential determination of 99Tc and 126Sn in radioactive concentrate. Acta Chim Slovaca 10:61–64

    Article  CAS  Google Scholar 

  8. ICRP (1983) Radiation data. Ann ICRP 10:9–1250

    Google Scholar 

  9. Andris B, Beňa J (2016) The development of 126Sn separation procedure by means of TBP resin. J Radioanal Nucl Chem 308:781–788. https://doi.org/10.1007/s10967-015-4599-y

    Article  CAS  Google Scholar 

  10. Dulanská S, Silliková V, Remenec B et al (2016) Sequential determination of 93Zr, 94Nb, 99Tc and 126Sn in radioactive waste using anion exchange resin and TEVA® Resin. J Radioanal Nucl Chem 309:685–689. https://doi.org/10.1007/s10967-015-4613-4

    Article  CAS  Google Scholar 

  11. Bagán H, Tarancón A, Rauret G, García JF (2011) Radiostrontium separation and measurement in a single step using plastic scintillators plus selective extractants. Application to aqueous sample analysis. Anal Chim Acta 686:50–56. https://doi.org/10.1016/j.aca.2010.11.048

    Article  CAS  PubMed  Google Scholar 

  12. Tarancón A, Bagán H, García JF (2017) Plastic scintillators and related analytical procedures for radionuclide analysis. J Radioanal Nucl Chem 314:555–572. https://doi.org/10.1007/s10967-017-5494-5

    Article  CAS  Google Scholar 

  13. Sáez-Muñoz M, Bagán H, Tarancón A et al (2018) Rapid method for radiostrontium determination in milk in emergency situations using PS resin. J Radioanal Nucl Chem 315:543–555. https://doi.org/10.1007/s10967-017-5682-3

    Article  CAS  Google Scholar 

  14. Bagán H, Tarancón A, Stavsetra L et al (2012) Determination of oil reservoir radiotracer (S14CN–) in a single step using a plastic scintillator extractive resin. Anal Chim Acta 736:30–35. https://doi.org/10.1016/j.aca.2012.05.045

    Article  CAS  PubMed  Google Scholar 

  15. Lluch E, Barrera J, Tarancón A et al (2016) Analysis of 210Pb in water samples with plastic scintillation resins. Anal Chim Acta 940:38–45. https://doi.org/10.1016/j.aca.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  16. Barrera J, Tarancón A, Bagán H, García JF (2016) A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. Anal Chim Acta 936:259–266. https://doi.org/10.1016/j.aca.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  17. Muetterties EL, Wright CM (1965) Chelate chemistry. III. Chelates of high coordination number. J Am Chem Soc 87:4706–4717. https://doi.org/10.1021/ja00949a009

    Article  CAS  Google Scholar 

  18. Ahn JW, Lee JC (2011) Separation of Sn, Sb, Bi, As, Cu, Pb and Zn from hydrochloric acid solution by solvent extraction process using TBP (tri-n-butylphosphate) as an extractant. Mater Trans 52:2228–2232. https://doi.org/10.2320/matertrans.m2011142

    Article  CAS  Google Scholar 

  19. Bagán H, Tarancón A, Ye L, García JF (2014) Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media. Anal Chim Acta 852:13–19. https://doi.org/10.1016/j.aca.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  20. Ferreux L, Lépy MC, Bé MM et al (2010) Decay scheme study of 126Sn and 126Sb. Appl Radiat Isot 68:1571–1577. https://doi.org/10.1016/j.apradiso.2009.11.055

    Article  CAS  PubMed  Google Scholar 

  21. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  22. Driks C, Vajda N, Kovács-Szeles E et al (2014) Characterization of a TBP resin and development of methods for the separation of actinides and purification of Sn. In: Poster presented at the 17th radiochemistry conference, Marianske Lazne (Tcheque Republic), 11–16 May 2014

Download references

Acknowledgements

The authors thank the Spanish Ministerio de Economia y Competitividad (MINECO) for financial support, under CTM2017-87107-R, and the Catalan Agència de Gestió d’Ajuts Uiversitaris i de Recerca (AGAUR) for financial support, under 2017-SGR-907. The authors also thank Philippe Cassette for providing the partially treated reprocessing sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Bagán.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarroya, I., Ferradal, A., Bagán, H. et al. Development and evaluation of a plastic scintillating resin for radioactive tin determination. J Radioanal Nucl Chem 321, 207–215 (2019). https://doi.org/10.1007/s10967-019-06552-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06552-3

Keywords

Navigation