Advertisement

Role of biomolecules in selective extraction of U(VI) using an aqueous biphasic system

  • Rajib Karmakar
  • Kamalika SenEmail author
Article
  • 13 Downloads

Abstract

An aqueous biphasic system has been used for selective extraction of U(VI) ions from Th(IV), Sm(III) and Ce(III). Role of different biomolecules like morin, catechin, hesperidin and 4-hydroxycoumarin have been studied. Morin serves as the best reagent when citrate ions are used as a masking agent. Citrate forms stronger complexes with the other metal ions than morin thereby restricting their extractions. Contrarily, U(VI) forms a stronger complex with morin than citrate and is selectively extracted under the same conditions. It was also observed that morin can act as a spectrophotometric reagent for ratiometric detection and analysis of U(VI) ions.

Keywords

Aqueous biphasic system Spectrophotometry Ratiometry Uranyl ions Binding constant 

Notes

Acknowledgements

R. K. gratefully acknowledges the University Grants Commission (UGC), New Delhi, India (Ref No. 19/06/2016(i)EU-V dated 14/06/2017) for providing necessary fellowship. K. S. acknowledges UGC CAS V for funding. The authors are thankful to Prof. Susanta Lahiri, Head, Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India, for providing the uranium sample.

Supplementary material

10967_2019_6494_MOESM1_ESM.docx (740 kb)
Supplementary material 1 (DOCX 741 kb)

References

  1. 1.
    Brook BW, Alonso A, Meneley DA, Misak J, Blees T, van Erp JB (2014) Why nuclear energy is sustainable and has to be part of the energy mix. Sustain Mater Technol 1:8–16Google Scholar
  2. 2.
    Srncik M, Kogelnig D, Stojanovic A, Körner W, Krachler R, Wallner G (2009) Uranium extraction from aqueous solutions by ionic liquids. Appl Radiat Isot 67(12):2146–2149CrossRefGoogle Scholar
  3. 3.
    Radespiel-Tröger M, Meyer M (2013) Association between drinking water uranium content and cancer risk in Bavaria, Germany. Int Arch Occup Environ Health 86(7):767–776CrossRefGoogle Scholar
  4. 4.
    Wagner SE, Burch JB, Bottai M, Puett R, Porter D, Bolick-Aldrich S, Temples T, Wilkerson RC, Vena JE, Hébert JR (2011) Groundwater uranium and cancer incidence in South Carolina. Cancer Causes Control 22(1):41–50CrossRefGoogle Scholar
  5. 5.
    Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2004) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113(1):68–72CrossRefGoogle Scholar
  6. 6.
    Seldén AI, Lundholm C, Edlund B, Högdahl C, Ek BM, Bergström BE, Ohlson CG (2009) Nephrotoxicity of uranium in drinking water from private drilled wells. Environ Res 109(4):486–494CrossRefGoogle Scholar
  7. 7.
    World Health Organization, Geneva, Switzerland (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. WHO Press, World Health Organization, GenevaGoogle Scholar
  8. 8.
    Davies RV, Kennedy J, McIlroy RW, Spence R, Hill KM (1964) Extraction of uranium from sea water. Nature 203(4950):1110–1115CrossRefGoogle Scholar
  9. 9.
    Das S, Brown S, Mayes RT, Janke CJ, Tsouris C, Kuo LJ, Gill G, Dai S (2016) Novel poly (imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135CrossRefGoogle Scholar
  10. 10.
    Shamsipur M, Ghiasvand AR, Yamini Y (1999) Solid-phase extraction of ultratrace uranium (VI) in natural waters using octadecyl silica membrane disks modified by tri-n-octylphosphine oxide and its spectrophotometric determination with dibenzoylmethane. Anal Chem 71(21):4892–4895CrossRefGoogle Scholar
  11. 11.
    Sadeghi S, Sheikhzadeh E (2009) Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (VI) ions from water samples. J Hazard Mater 163(2–3):861–868CrossRefGoogle Scholar
  12. 12.
    Kumar JR, Kim JS, Lee JY, Yoon HS (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40(2):77–125CrossRefGoogle Scholar
  13. 13.
    Hadadian M, Mallah MH, Moosavian MA, Safdari J, Davoudi M (2016) Separation of uranium (VI) using dispersive liquid-liquid extraction from leach liquor. Progr Nucl Energy 90:212–218CrossRefGoogle Scholar
  14. 14.
    Torkabad MG, Keshtkar AR, Safdari SJ (2017) Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution. Prog Nucl Energy 94:93–100CrossRefGoogle Scholar
  15. 15.
    El-Magied MO, Mohammaden TF, El-Aassy IK, Gad HM, Hassan AM, Mahmoud MA (2017) Decontamination of Uranium-Polluted Groundwater by Chemically-Enhanced, Sawdust-Activated Carbon. Colloids Interfaces 1(1):2CrossRefGoogle Scholar
  16. 16.
    Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505CrossRefGoogle Scholar
  17. 17.
    Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356CrossRefGoogle Scholar
  18. 18.
    El-Magied MA, Soliman AG, El-Hamid AA, Eldesouky EM (2018) Uranium extraction by sulfonated mesoporous silica derived from blast furnace slag. J Nucl Mater 509:295–304CrossRefGoogle Scholar
  19. 19.
    Zeng Z, Wei Y, Shen L, Hua D (2015) Cationically charged poly (amidoxime)-grafted polypropylene nonwoven fabric for potential uranium extraction from seawater. Ind Eng Chem Res 54(35):8699–8705CrossRefGoogle Scholar
  20. 20.
    Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446CrossRefGoogle Scholar
  21. 21.
    Piechowicz M, Abney CW, Zhou X, Thacker NC, Li Z, Lin W (2015) Design, synthesis, and characterization of a bifunctional chelator with ultrahigh capacity for uranium uptake from seawater simulant. Ind Eng Chem Res 55(15):4170–4178CrossRefGoogle Scholar
  22. 22.
    Chen L, Wang Y, Yuan X, Ren Y, Liu N, Yuan L, Feng W (2018) Highly selective extraction of uranium from nitric acid medium with phosphine oxide functionalized pillar [5] arenes in room temperature ionic liquid. Sep Purif Technol 192:152–159CrossRefGoogle Scholar
  23. 23.
    Karmakar R, Sen K (2019) Aqueous biphasic extraction of metal ions: an alternative technology for metal regeneration. J Mol Liq 273:231–247CrossRefGoogle Scholar
  24. 24.
    Senol A (2003) Liquid-liquid extraction of uranium (VI) from aqueous acidic solutions using Alamine, TBP and CYANEX systems. J Radioanal Nucl Chem 258(2):361–372CrossRefGoogle Scholar
  25. 25.
    Ali MB, Ahmed AY, Attou M, Elias A, Didi MA (2012) Liquid-liquid extraction of uranium (VI) from aqueous solution using 1-hydroxyalkylidene-1, 1-diphosphonic acids. Solvent Extr Ion Exch 30(5):469–479CrossRefGoogle Scholar
  26. 26.
    Khayambashi A, Wang X, Wei Y (2016) Solid phase extraction of uranium (VI) from phosphoric acid medium using macroporous silica-based D2EHPA-TOPO impregnated polymeric adsorbent. Hydrometallurgy 164:90–96CrossRefGoogle Scholar
  27. 27.
    Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386(1):291–299CrossRefGoogle Scholar
  28. 28.
    Kulkarni SS, Juvekar VA, Mukhopadhyay S (2018) Intensification of emulsion liquid membrane extraction of uranium (VI) by replacing nitric acid with sodium nitrate solution. Chem Eng Process 125:18–26CrossRefGoogle Scholar
  29. 29.
    Candela AM, Benatti V, Palet C (2013) Pre-concentration of uranium (VI) using bulk liquid and supported liquid membrane systems optimized containing bis (2-ethylhexyl) phosphoric acid as carrier in low concentrations. Sep Purif Technol 120:172–179CrossRefGoogle Scholar
  30. 30.
    Pawaskar CS, Mohapatra PK, Manchanda VK (1999) Extraction of actinides and fission products from salt solutions using polyethylene glycols (PEGs). J Radioanal Nucl Chem 242(3):627–634CrossRefGoogle Scholar
  31. 31.
    Tosheva Z, Stoyanova K, Nikolchev L (2004) Comparison of different methods for uranium determination in water. J Environ Radioact 72(1–2):47–55CrossRefGoogle Scholar
  32. 32.
    Zeng S, Li SJ, Sun XJ, Li MQ, Ma YQ, Xing ZY, Li JL (2018) A naphthalene-quinoline based chemosensor for fluorescent “turn-on” and absorbance-ratiometric detection of Al3+ and its application in cells imaging. Spectrochim Acta A 205:276–286CrossRefGoogle Scholar
  33. 33.
    Cho SW, Rao AS, Bhunia S, Reo YJ, Singha S, Ahn KH (2019) Ratiometric fluorescence detection of Cu (II) with a keto-dipicolylamine ligand: a mechanistic implication. Sens Actuators B Chem 279:204–212CrossRefGoogle Scholar
  34. 34.
    Ghatak SK, Dey D, Sen S, Sen K (2013) Aromatic amino acids in high selectivity bismuth (III) recognition. Analyst 138(8):2308–2314CrossRefGoogle Scholar
  35. 35.
    Rogers RD, Zhang J, Bond AH, Bauer CB, Jezl ML, Roden DM (1995) Selective and quantitative partitioning of pertechnetate in polyethylene-glycol based aqueous biphasic systems. Solvent Extr Ion Exch 13(4):665–688CrossRefGoogle Scholar
  36. 36.
    Kerisit S, Liu C (2013) Structure, kinetics, and thermodynamics of the aqueous uranyl (VI) cation. J Phys Chem A 117(30):6421–6432CrossRefGoogle Scholar
  37. 37.
    Marcus Y (1991) Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J Chem Soc, Faraday Trans 87(18):2995–2999CrossRefGoogle Scholar
  38. 38.
    Domínguez-Renedo O, Navarro-Cuñado AM, Ventas-Romay E, Alonso-Lomillo MA (2019) Determination of aluminium using different techniques based on the Al(III)-morin complex. Talanta 196:131–136CrossRefGoogle Scholar
  39. 39.
    Yasarawan N, Thipyapong K, Sirichai S, Ruangpornvisuti V (2013) Fundamental insights into conformational stability and orbital interactions of antioxidant (+)-catechin species and complexation of (+)-catechin with zinc (II) and oxovanadium (IV). J Mol Struct 1047:344–357CrossRefGoogle Scholar
  40. 40.
    Oliveira RM, de Souza Daniel JF, de Aguiar I, Silva MF, Fernandes JB, Carlos RM (2013) Structural effects on the hesperidin properties obtained by chelation to magnesium complexes. J Inorg Biochem 129:35–42CrossRefGoogle Scholar
  41. 41.
    Georgieva I, Mihaylov T, Trendafilova N (2014) Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies. J Inorg Biochem 135:100–112CrossRefGoogle Scholar
  42. 42.
    Huang FY, Brady PV, Lindgren ER, Guerra P (1998) Biodegradation of uranium–citrate complexes: implications for extraction of uranium from soils. Environ Sci Technol 32(3):379–382CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations