Isotopic concentration of uranium from alpha spectrum of electrodeposited source on 4H-SiC detector at 500 °C

Abstract

4H-SiC alpha detectors were fabricated with a 21-μm thick depletion depth and were packaged into a stainless-steel casing with a mineral insulation cable and a standard BNC connector. The packaged detectors had a resolution of 0.624% FWHM at 5.486 MeV prior to salt immersion. The detectors were then immersed in a LiCl–KCl–UCl3 molten salt at 500 °C, from which a thin layer of depleted uranium was electrodeposited onto the detectors. Alpha particle emission spectra were collected from the electrodeposited source. The energy resolution of the surviving detector was 2.29% FWHM at 4.198 MeV and was sufficient to separate the 234U from 238U alpha emissions (577 keV difference). The 234U/238U activity ratio and the isotopic concentrations of 234U and 238U were determined and are representative of the uranium source used in the electrodeposition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Development of pyroprocessing technology. Prog Nucl Energy 31(12):131–140

    Article  CAS  Google Scholar 

  2. 2.

    Aryaeinejad R et al (2006) Safeguards and non-proliferation issues as related to advanced fuel cycle and advanced fast reactor development with processing of reactor fuel. In: Nuclear Science Symposium Conference Record, vol 1. IEEE

  3. 3.

    Tomczuk Zygmunt, Ackerman John P, Wolson Raymond D, Miller William E (1992) Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel. J Electrochem Soc 139(12):3523–3528

    Article  CAS  Google Scholar 

  4. 4.

    Ackerman JP (1991) Chemical basis for pyrochemical reprocessing of nuclear fuel. Ind Eng Chem Res 30:141–145

    Article  CAS  Google Scholar 

  5. 5.

    Lally AE, Glover KM (1984) Source preparation in alpha spectrometry. Nucl Instrum Methods Phys Res 223(2–3):259–265

    Article  CAS  Google Scholar 

  6. 6.

    Braunstein J, Mamantov G, Smith GP (2013) Advances in molten salt chemistry. Springer, Berlin

    Google Scholar 

  7. 7.

    Stika M, Padilla S, Jarrell J, Blue T, Cao LR, Simpson M (2018) Thin-layer electrodeposition of uranium metal from molten LiCl–KCl. J Electrochem Soc 165(3):D135–D141

    Article  CAS  Google Scholar 

  8. 8.

    Jarrell J (2018) Fabrication and characterization of a molten salt application silicon carbide alpha detector. Dissertation. The Ohio State University

  9. 9.

    Knoll GF (2000) Radiation detection, 3rd edn. Wiley, Hoboken

    Google Scholar 

  10. 10.

    McKee DW, Chatterji D (1976) Corrosion of silicon carbide in gases and alkaline melts. J Am Ceram Soc 59:441–444

    Article  CAS  Google Scholar 

  11. 11.

    Zat’ko B, Dubecký F, Šagátová A, Sedlačová K, Ryć L (2015) High resolution alpha particle detectors based on 4H-SiC epitaxial layer. J Instrum 10:C04009

    Article  CAS  Google Scholar 

  12. 12.

    Jarrell Joshua, Stika Milan, Simpson Michael, Blue TE, Cao LR (2018) 4H-SiC alpha spectrometry for nuclear forensics with electrodeposited sources. J Radioanal Nucl Chem 318:667–672. https://doi.org/10.1007/s10967-018-6137-1

    Article  CAS  Google Scholar 

  13. 13.

    Chukreev FE, Makarenko VE, Martin MJ (2002) Nuclear data sheets for A = 238. Nucl Data Sheets 97(1):129–240

    Article  CAS  Google Scholar 

  14. 14.

    Browne E, Tuli JK (2007) Nuclear data sheets for A = 234. Nucl Data Sheets 108(3):681–772

    Article  CAS  Google Scholar 

  15. 15.

    Schmorak MR (1983) Nuclear data sheets for A = 231, 235, 239. Nucl Data Sheets 40(1):1–147

    Article  CAS  Google Scholar 

  16. 16.

    Stika M, Padilla S, Jarrell J, Blue T, Cao LR, Simpson M (2017) Thin-layer electrodeposition of thorium metal from molten LiCl–KCl. J Electrochem Soc 164(8):H5078–H5085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is being performed using funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Program (Grant No: 15-8074). We acknowledge the staff at OSU NanoTech West for supporting SiC device fabrication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei R. Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor, N.R., Alnajjar, N., Jarrell, J. et al. Isotopic concentration of uranium from alpha spectrum of electrodeposited source on 4H-SiC detector at 500 °C. J Radioanal Nucl Chem 320, 441–449 (2019). https://doi.org/10.1007/s10967-019-06492-y

Download citation

Keywords

  • Alpha spectroscopy
  • Electrodeposition
  • SiC
  • Isotopic concentration
  • Depleted uranium