A survey of isotopic composition (2H, 3H, 18O) of groundwater from Vojvodina


Isotopes of hydrogen (3H, 2H) and oxygen (18O) are perfect candidates for groundwater tracers. A survey of isotopic composition of 34 groundwater samples and one Lake from Vojvodina region (Serbia) is presented here. Tritium activity concentration and stable isotope composition (δ2H, δ18O), as well as deuterium excess, were determined. The groundwater samples lie on the groundwater regression line. Minor deviations and a few lower deuterium excess values indicate waters recharged in a different climate regime and subjected to evaporation, respectively. According to the obtained results, most of the analyzed groundwater can be characterized as modern waters, recharged mostly from precipitation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    ISO 5667-3:2012. Water quality—Sampling - Part 3: Preservation and handling of water samples.

  2. 2.

    ISO 5667-11:2009. Water quality—Sampling - Part 11: Guidance on sampling of groundwaters.


  1. 1.

    Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishing, Boca Raton, p 328

    Google Scholar 

  2. 2.

    Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Springer, New York. ISBN 978-0-7923-7707-8

    Google Scholar 

  3. 3.

    Suckow A (2014) The age of groundwater—definitions, models and why we do not need this term. Appl Geochem 50:222–230

    Article  CAS  Google Scholar 

  4. 4.

    Münnich KO (1957) Messung natürlichen Radiokohlenstoffs mit einem CO2-Proportionalzählrohr, Ph.D. thesis, Universität Heidelberg, Heidelberg, West Germany

  5. 5.

    IAEA (2013) isotope methods for dating old groundwater. International Atomic Energy Agency, Vienna

    Google Scholar 

  6. 6.

    Mook WG (2001) Environmental isotopes in the hydrological cycle, principles and applications, vols I, IV, V, technical documents in hydrology no. 39, IAEA-UNESCO

  7. 7.

    Santos IR, Zhang C, Mahera DT, Atkins ML, Holland R, Morgenstern U, Li L (2017) Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modeling. Sci Total Environ 580:367–379

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, New York. ISBN 978-0-471-71819-2

    Google Scholar 

  9. 9.

    Kralik M (2015) How to estimate mean residence times of groundwater. Procedia Earth Planet Sci 13:301–306

    Article  CAS  Google Scholar 

  10. 10.

    Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Rohden C, Kreuzer A, Chen Z, Kipfer R, Aeschbach-Hertig W (2010) Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Water Resour Res 46(5), CiteID W05511

  12. 12.

    Gröning M, Rozanski K (2003) Uncertainty assessment of environmental tritium measurements in water. Accred Qual Assur 8(7–8):359–366

    Article  CAS  Google Scholar 

  13. 13.

    Nikolov J, Krajcar Bronić I, Todorović N, Stojković I, Barešić J, Petrović-Pantić T (2018) Tritium in water: hydrology and health implications. In: Marija J (ed) Tritium advances in research and application. NOVA Science Publisher, New York, pp 157–213. ISBN 978-1-53613-507-7

    Google Scholar 

  14. 14.

    Janković M, Janković B, Todorović D, Ignjatović L (2012) Tritium concentration analysis in atmospheric precipitation in Serbia. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(5):669–674. https://doi.org/10.1080/10934529.2012.660039

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Vreča P, Krajcar Bronić I, Horvatinčić N, Barešić J (2006) Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. J Hydrol 330(3–4):457–469. https://doi.org/10.1016/j.jhydrol.2006.04.0

    Article  Google Scholar 

  16. 16.

    Vreča P, Krajcar Bronić I, Leis A, Brenčić M (2008) Isotopic composition of precipitation in Ljubljana (Slovenia). Geologija (Ljubljana) 51:169–182

    Article  Google Scholar 

  17. 17.

    Vreča P, Krajcar Bronić I, Leis A, Demšar M (2014) Isotopic composition of precipitation at the station Ljubljana (Reaktor), Slovenia—period 2007–2010. Geologija 57:217–230

    Article  Google Scholar 

  18. 18.

    Krajcar Bronić I, Vreča P, Horvatinčić N, Barešić J, Obelić B (2006) Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Arhiv za higijenu rada i toksikologiju 57:23–29

    PubMed  Google Scholar 

  19. 19.

    Tomić M, Lazić M (2017) Healing waters of Vojvodina as a potential for development of the spa tourism, Educatio. Zadužbina Andrejević, Belgrade, p 119. ISBN 978-86-525-0300-1

    Google Scholar 

  20. 20.

    Aksin V, Milosavljević S (1982) Geothermal research of SAP Vojvodina—research and use, Novi Sad, Serbia

  21. 21.

    Demić I, Vukićević Z (2005) Thermal spa “Banja Kanjiža”—an example of successful utilization of geothermal energy. In: Proceedings world geothermal congress 2005, Antalya, Turkey, 24–29 April 2005

  22. 22.

    Bašić Đ, Petrović J, Marić M, Dragutinović G, Gvozdenac B, Štrbac D (2009) Possibilities of using the energy potential of geothermal waters in Vojvodina region (on Serbian), Prometej, Novi Sad

  23. 23.

    Protić D (1995) Mineral and thermal water of Serbia. Special issue of Geoinstitute, Belgrade, book 17, p 269

  24. 24.

    Nikolov J, Todorović N, Janković M, Voštinar M, Bikit I, Vesković M (2013) Different methods for tritium determination in surface water by LSC. Appl Radiat Isotopes 71:51–56

    Article  CAS  Google Scholar 

  25. 25.

    Rozanski K, Gröning M (2004) Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry. In: Quantifying uncertainty in nuclear analytical measurements, IAEA-TECDOC-1401, IAEA, Vienna, pp 195–217

  26. 26.

    Gröning M, Auer R, Brummer D, Jaklitsch M, Sambandam C, Tanweer A, Tatzber H (2009) Increasing the performance of tritium analysis by electrolytic enrichment. Isotopes Environ Health Stud 45(2):118–125. https://doi.org/10.1080/10256010902872042

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Barešić J, Krajcar Bronić I, Horvatinčić N, Obelić B, Sironić A, Kožar-Logar J (2011) Tritium activity measurement of water samples using liquid scintillation counter and electrolytical enrichment. In: Proceedings of the eight symposium of the croatian radiation protection association, 13–15 April 2011. Krk. Zagreb: HDZZ, pp 461–467

  28. 28.

    Barešić J, Horvatinčić N, Krajcar Bronić I, Obelić B (2010) Comparison of two techniques for low-level tritium measurement—gas proportional and liquid scintillation counting. In: Proceedings of the third European IRPA congress, full papers of poster presentations, Helsinki, Finland, June 2010: IRPA, 2010. P12-21-1-P12-21-5, pp 1988–1992. http://www.irpa2010europe.com/pdfs/proceedings/S12-P12.pdf

  29. 29.

    Currie LA (1968) Limits of qualitative detection and quantification determination. Anal Chem 40(3):587–593

    Article  Google Scholar 

  30. 30.

    Picarro webpage (2018). http://www.picarro.com/technology/cavity_ring_down_spectroscopy

  31. 31.

    Busch KW, Busch MA (1997) Cavity ring-down spectroscopy: an ultra trace absorption measurement technique. In: ACS symposium series 720, Oxford

  32. 32.

    Motzer W (2007) Tritium age dating of groundwater. In: Hydro visions, vol 16, no 2. Groundwater Resources Association of California (2007)

  33. 33.

    Mazor E (2003) Chemical and isotopic groundwater hydrology. CRC Press, Boca Raton. ISBN 978-0824747046

  34. 34.

    Gibson JJ, Reid R (2010) Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed. J Hydrol 381:142–150

    Article  CAS  Google Scholar 

  35. 35.

    Golobočanin D, Ogrinc N, Bondzić A, Miljević N (2007) Isotopic characteristics of meteoric waters in the Belgrade region. Isotop Environ Health Stud 43:355–367

    Article  CAS  Google Scholar 

  36. 36.

    Gat JR, Dansgaard W (1972) Stable isotope survey of the freshwater occurrences in Israel and the Jordan Rift Valley. J Hydrol 16:177–211

    Article  CAS  Google Scholar 

  37. 37.

    Cruz-San J, Araguas L, Rozanski K, Benavente J, Cardenal J, Hidalgo MC, Garcia-Lopez S, Martinez-Garrido JC, Moral F, Olias M (1992) Sources of precipitation over South-Eastern Spain and groundwater recharge—an isotopic study. Tellus 44B:226–236

    Google Scholar 

  38. 38.

    Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr 78:1–36

    Google Scholar 

  39. 39.

    Craig H (1961) Isotope variations in meteoric waters. Science 133:1702–1703

    Article  CAS  PubMed  Google Scholar 

Download references


The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of Republic of Serbia, within the projects No. OI171002 and III43002, and the Provincial Secretariat for higher education and scientific research within the project "Radionuclides in drinking water and cancer incidence in Vojvodina" No. 142-451-2447/2018. This study was a part of the project No. 114-451-2538/2014 financed by Provincial Secretariat for higher education and scientific research of AP Vojvodina.

Author information



Corresponding author

Correspondence to Jovana Nikolov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolov, J., Krajcar Bronić, I., Todorović, N. et al. A survey of isotopic composition (2H, 3H, 18O) of groundwater from Vojvodina. J Radioanal Nucl Chem 320, 385–394 (2019). https://doi.org/10.1007/s10967-019-06469-x

Download citation


  • Groundwater age
  • Tritium
  • Stable isotopes
  • Hydrogeology