Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Th(IV) adsorption onto titanium tetrachloride modified sodium bentonite

  • 121 Accesses

  • 1 Citations


Ti(OH)4 and TiCl4 modified bentonite (Ti–Na-bent) were applied in the removal of Th(IV) from aqueous solution. Effect of different factors such as pH, contact time, temperature, initial concentration of Th(IV) and efficiency of them for thorium adsorption are investigated. Ti–Na-bent showed high adsorption capacity (qm = 231.37 mg/g) and quick adsorption kinetics at lower pH. The adsorption mechanisms involved are: (1) Th4+, [Th(OH)4−n]n+ complexed on the outer-sphere of Na-bent and Ti–Na-bent. (2) Ion exchange between Th4+, [Th(OH)4−n]n+ and exchangeable cations of Na-bent and the H on the hydroxyl group of Ti(OH)4. Ti–Na-bent manifested high adsorption capacity for Th(IV), good acid resistance and long-term adsorption stability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Vearrier D, Curtis JA, Greenberg MI (2009) Technologically enhanced naturally occurring radioactive materials. Clin Toxicol 47(5):393

  2. 2.

    Ryabchikov DI, Gol’Braikh EK (1963) The analytical chemistry of thorium. Pergamon Press, Oxford, pp 298–311

  3. 3.

    Qadeer R, Hanif J (1995) Uptake of thorium ions from aqueous solutions by a molecular sieve (13X type) powder. J Radioanal Nucl Chem 190(1):103–112

  4. 4.

    Zuo L, Yu S, Zhou H et al (2011) Th(IV) adsorption on mesoporous molecular sieves: effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. J Radioanal Nucl Chem 288(2):379–387

  5. 5.

    Kiliari T, Pashalidis I (2011) Thorium determination in aqueous solutions after separation by ion-exchange and liquid extraction. J Radioanal Nucl Chem 288(3):753–758

  6. 6.

    Tan X, Wang X, Fang M et al (2007) Sption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf A 296(1–3):109–116

  7. 7.

    Li B, Zhang Y, Ma D et al (2014) Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. Nat Commun 5(5):5537

  8. 8.

    Vilela D, Parmar J, Zeng Y et al (2016) Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett 16(4):2860–2866

  9. 9.

    Ning H, Zhai L, Hong X et al (2017) Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J Am Chem Soc 139(6):2428

  10. 10.

    Song X, Wang Y, Cai J et al (2013) Sorption of Th(IV) from aqueous solution to GMZ bentonite: effect of pH, ionic strength, fulvic acid and electrolyte ions. J Radioanal Nucl Chem 295(2):991–1000

  11. 11.

    Hu T, Tan L (2012) Modifying attapulgite clay by ammonium citrate tribasic for the removal of radionuclide Th(IV) from aqueous solution. J Radioanal Nucl Chem 292(2):819–827

  12. 12.

    Chen CL, Li XL, Wang XK et al (2009) Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption. Radiochim Acta 95(5):261–266

  13. 13.

    Wang M, Tao X, Song X et al (2011) Effect of pH, ionic strength and temperature on sorption characteristics of Th(IV) on oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 288(3):859–865

  14. 14.

    Gok C, Turkozu DA, Aytas S (2011) Removal of Th(IV) ions from aqueous solution using bi-functionalized algae-yeast biosorbent. J Radioanal Nucl Chem 287(2):533–541

  15. 15.

    Guo GL, Luo MB, Xu JJ et al (2009) Separation and continuous determination of the light rare earth elements and thorium in Baotou Iron Ore by a micro-column. J Radioanal Nucl Chem 281(3):647–651

  16. 16.

    Xu JZ, Fan QH, Bai HB et al (2009) Effects of ionic strength, temperature and humic substances concentration on the sorption of Th(IV) to attapulgite. J Nucl Radiochem 31(3):179–185

  17. 17.

    Tan X, Wang X, Fang M et al (2007) Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids Surf A 296(1–3):109–116

  18. 18.

    Liao Q, Zou D, Pan W et al (2018) Highly efficient capture of Eu(III), La(III), Nd(III), Th(IV) from aqueous solutions using g-C3 N4 nanosheets. J Mol Liq 252:351

  19. 19.

    Unuabonah EI, Olu-Owolabi BI, Adebowale KO (2016) Competitive adsorption of metal ions onto goethite-humic acid-modified kaolinite clay. Int J Environ Sci Technol 13(4):1043–1054

  20. 20.

    Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem Eng J 99:17–184

  21. 21.

    Echeverría JC, Churio E, Garrido JJ (2002) Retention mechanisms of Cd on illite. Clays Clay Miner 50:614–623

  22. 22.

    Brigatti MF, Lugli C, Poppi L (2000) Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci 16:45–57

  23. 23.

    Wu H, Qiang S, Fan Q et al (2018) Exploring the relationship between Th(IV) adsorption and the structure alteration of phlogopite. Appl Clay Sci 152:295–302

  24. 24.

    Donat R, Akdogan A, Erdem E, Cetisli H (2005) Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286:43–52

  25. 25.

    Lu S, Xu H, Wang M et al (2012) Sorption of Eu(III) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid. J Radioanal Nucl Chem 292(2):889–895

  26. 26.

    Jia W, Lu S (2014) Effect of pH, foreign ions and temperature on radionickel sorption onto bentonite from Inner Mongolia, China. J Radioanal Nucl Chem 299(3):1417–1426

  27. 27.

    Dixon D, Chandler N, Graham J et al (2002) Two large-scale sealing tests conducted at atomic energy of Canada’s underground research laboratory: the buffer-container experiment and the isothermal test. Can Geotech J 39(3):503–518

  28. 28.

    Herbert HJ, Moog HC (1999) Cation exchange, interlayer spacing, and water content of MX-80 bentonite in high molar saline solutions. Eng Geol 54(1–2):55–65

  29. 29.

    Nakashima Y (2006) H2O self-diffusion coefficient of water-rich MX-80 bentonite gels. Clay Miner 41(2):659–668

  30. 30.

    Hu P, Wang J, Huang R (2016) Simultaneous removal of Cr(VI) and Amido black 10B (AB10B) from aqueous solutions using quaternized chitosan coated bentonite. Int J Biol Macromol 92:694

  31. 31.

    De Luna MDG, Futalan CM, Jurado CA et al (2017) Removal of ammonium–nitrogen from aqueous solution using chitosan—coated bentonite: mechanism and effect of operating parameters. J Appl Polym Sci 135(9):45924

  32. 32.

    Chen H, Chen QS, Huang B et al (2018) High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution. J Radioanal Nucl Chem 316(1):71–80

  33. 33.

    Sun Z, Yan B, Wang A et al (2017) Adsorption of reactive red X-3B on chitosan/CTAB modified bentonite. Huanjing Kexue Xuebao 37(2):617–623

  34. 34.

    Shu YH, Li LS, Zhang QY et al (2010) Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite. J Hazard Mater 173(1):47–53

  35. 35.

    Chen Y, Peng J, Xiao H et al (2017) Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+ and methyl orange removal from water. Appl Surf Sci 420:773–781

  36. 36.

    Oluowolabi BI, Popoola DB, Unuabonah EI (2010) Removal of Cu2+ and Cd2+ from aqueous solution by bentonite clay modified with binary mixture of goethite and humic acid. Water Air Soil Pollut 211(1–4):459–474

  37. 37.

    Putro JN, Santoso SP, Ismadji S et al (2017) Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose—bentonite nanocomposite: improvement on extended Langmuir isotherm moselsl. Microporous Mesoporous Mater 246:166–177

  38. 38.

    Martin CM, Jefferis SA, Lam C (2014) Effects of polymer and bentonite support fluids on concrete-sand interface shear strength. Géotechnique 64(1):28–39

  39. 39.

    Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178(1–3):171

  40. 40.

    Liu DQ, Liu Z, Wang C et al (2016) Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J Radioanal Nucl Chem 310(3):1–7

  41. 41.

    Dai Y, Liu Y, Zhang AY (2017) Preparation and characterization of a mesoporous silica-polymer crown impregnated material and its adsorption for palladium from highly acid medium. J Porous Mater 24(4):1037–1045

  42. 42.

    Nariyal RK, Kothari P, Bisht B (2014) FT-IR measurements of SiO2 glass prepared by sol–gel technique. Chem Sci Trans 3(3):1064–1066

  43. 43.

    Xu D, Tan XL, Chen CL et al (2008) Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Appl Clay Sci 41(1–2):37–46

  44. 44.

    Liu JL, Luo MB, Yuan Z et al (2013) Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J Radioanal Nucl Chem 298(2):1427–1434

  45. 45.

    Parab H, Joshi S, Shenoy N et al (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Biores Technol 96(11):1241–1248

  46. 46.

    Zhou LM, Liu JH, Liu ZR (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172(1):439–446

  47. 47.

    Hu R, Wang X, Dai S et al (2015) Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chem Eng J 260(3):469–477

  48. 48.

    Qi C, Liu H, Deng S et al (2018) A modeling study by response surface methodology (RSM) on Th(IV) adsorption optimization using a sulfated β-cyclodextrin inclusion complex. Res Chem Intermed 44(4):2889–2911

  49. 49.

    Hu C, Liu HJ, Peng L et al (2016) Synthesis of ethylamine-bridged β-cyclodextrins and adsorption properties of thorium. J Radioanal Nucl Chem 308(1):251–259

  50. 50.

    Deb AKS, Mohanty BN, Ilaiyaraja P et al (2013) Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Chem 295(2):1161–1169

  51. 51.

    Gado M, Zaki S (2016) Studies on thorium adsorption characteristics upon activated titanium hydroxide prepared from rosetta ilmenite concentrate. Int J Waste Resour 6(1):1–7

  52. 52.

    Zuo L, Yu S, Zhou H et al (2011) Th(IV) adsorption on mesoporous molecular sieves: effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. J Radioanal Nucl Chem 288(2):379–387

Download references


The authors thank the International Scientific and Technological Cooperation Projects (2015DFR61020), Jiangxi Province Key Research and Development Project (No: 171505). Science and Technology Project of Jiangxi Provincial Department of Education (GJJ14468).

Author information

Correspondence to Quan Shui Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, X.H., Yuan, Y.H., Huang, B. et al. Th(IV) adsorption onto titanium tetrachloride modified sodium bentonite. J Radioanal Nucl Chem 319, 805–815 (2019). https://doi.org/10.1007/s10967-018-6377-0

Download citation


  • Sodium bentonite
  • Ti(OH)4
  • Th(IV)
  • Adsorption