Measurements of 60Ni(p,n)60Cu reaction cross-sections and covariance analysis of the uncertainty

  • B. Lawriniang
  • R. Ghosh
  • S. Badwar
  • Santhi Sheela Yerraguntla
  • B. Jyrwa
  • H. NaikEmail author
  • Y. P. Naik
  • S. V. Suryanarayana


The cross sections of the 60Ni(p,n)60Cu reaction from threshold energy to ~ 20 MeV have been measured by employing stack foil activation technique and off-line γ-ray spectrometry. The uncertainties for the reaction cross sections have been estimated by applying covariance analysis and least square method. The measured cross-sections are found to be in agreement with most of the literature data available in EXFOR database. The excitation function of the 60Ni(p,n)60Cu reaction was also theoretically calculated by using the TALYS-1.9 code. The excitation functions of 60Ni(p,n)60Cu reaction from TALYS-1.9 and TENDL-2017 follow a similar trend as of the experimental data of present work and literature but are little higher around the peak cross-section region.


60Ni(p,n)60Cu reaction γ-Ray spectroscopy Reaction cross-section Covariance analysis TALYS-1.9 TENDL-2017 



We would like to express our sincere thanks to the staffs of Tata Institute Fundamental Research, Mumbai for their kind help and their excellent operation of the accelerator during irradiations. One of the authors (B. Lawriniang) also gratefully acknowledges the financial support of the UGC for her PhD work.


  1. 1.
    Cullen DE, Muranaka R, Schmidt J (1990) Reactor physics calculations for applications in nuclear technology. In: Proceedings of the workshop, Trieste, Italy, 12–16 Mar 990Google Scholar
  2. 2.
    Yigit M, Kara A (2017) Simulation study of the proton-induced reaction cross-sections for the production of 18F and 66-68Ga radioisotopes. J Radioanal Nucl Chem 314:2383–2392CrossRefGoogle Scholar
  3. 3.
    Talou P, Chadwick MB, Young PG (2001) Recent developments in nuclear data for ADS T-16. Lectures given at the workshop on nuclear data for science and technology: accelerator driven waste incineration, Trieste, 10–21 Sept 2001Google Scholar
  4. 4.
    Enferadi M, Sarbazvatan S, Sadeghi M, Hong JH, Tung CJ, Chao TC, Lee CC, Wey SP (2017) Nuclear reaction cross sections for proton therapy applications. J Radioanal Nucl Chem 314:1207–1235CrossRefGoogle Scholar
  5. 5.
    Bailey DL, Townsend DW, Valk PE, Maisey MN (2005) Positron emission tomography: basic Sciences, Springer.
  6. 6.
    Tanaka S, Furukawa M, Chiba M (1972) Nuclear reactions of nickel with protons up to 56 MeV. J Inorg Nucl Chem 34:2419–2426CrossRefGoogle Scholar
  7. 7.
    Blosser HG, Handley TH (1955) Survey of (p, n) reactions at 12 MeV. Phys Rev C 100(5):1340–1344CrossRefGoogle Scholar
  8. 8.
    Singh BP, Sharma MK, Musthafa MM, Bhardwaj HD, Prasad R (2006) A study of pre-equilibrium emission in some proton- and alpha-induced reactions. Nucl Instrum Methods Phys Res, Sect A 562:717–720CrossRefGoogle Scholar
  9. 9.
    Uddin MS, Sudar S, Spahn I, Shariff MA, Qaim SM (2016) Excitation function of the 60Ni(p, γ)61Cu reaction from threshold to 16 MeV. Phys Rev C 93:044606CrossRefGoogle Scholar
  10. 10.
    Levkovskij VP, Reutov VF, Botvin KV (1990) Helium formation in molybdenum, zirconium, niobium, nickel, iron and chromium under irradiation by 8–30 MeV protons. At Ehnergiya 69(3):180–182Google Scholar
  11. 11.
    Sheela YS, Naik H, Prasad KM, Ganesan S, Nair NS, Suryanarayana SV (2017) Covariance analysis of efficiency calibration of HPGe detector internal report no. MU/STATISTICS/DAE-BRNS/2017/119-February-2017Google Scholar
  12. 12.
    IAEA-EXFOR Data base. Accessed April 2018
  13. 13.
    Koning A, Hilaire S, Goriely S (2015) TALYS-1.8, A Nuclear Reaction Program, NRG-1755 ZG Petten. The Netherlands, Accessed May 2018
  14. 14.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841–2934CrossRefGoogle Scholar
  15. 15.
    Lawriniang B, Ghosh R, Badwar S, Vansola V, Sheela YS, Suryanarayana SV, Naik H, Naik YP, Jyrwa B (2018) Measurement of cross-sections for the 93Nb(p,n)93mMo and 93Nb(p,pn)92mNb reactions up to ∼ 20 MeV energy. Nucl Physics A 973:79–88CrossRefGoogle Scholar
  16. 16.
    BARC—TIFR Pelletron-LINAC facility silver, facility silver jubilee (1988 –2013)Google Scholar
  17. 17.
  18. 18.
    Tyler AW (1939) The beta- and gamma-radiations from copper64 and europium152. Phys Rev 56(2):125–130CrossRefGoogle Scholar
  19. 19.
    NuDat 2.7β (2011) National Nuclear Data Center, Brookhaven National Laboratory. Accessed April 2018
  20. 20.
  21. 21.
  22. 22.
    Ziegler JF (2016) SRIM-2013. the stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar
  23. 23.
    Ghosh R, Badwar S, Lawriniang B, Yerraguntla SS, Naik H, Naik Y, Suryanayana SV, Jyrwa B, Ganesan S (2017) Measurement of photo-neutron cross-sections of Gd and Ce using Bremsstrahlung with an end point energy of 10 MeV. J Radioanal Nucl Chem 314:1983–1990CrossRefGoogle Scholar
  24. 24.
    Geraldo LP, Smith DL (1990) Covariance analysis and fitting of Germanium Gamma-ray detector efficiency calibration data. Nucl Instrum Methods Phys Res, Sect A 290:499–508CrossRefGoogle Scholar
  25. 25.
    Smith DL (1993) A least squares computational “tool kit”. Nuclear data and measurement series ANL/NDM-128 Engineering Physics Division, Argonne National Laboratory Argonne, U.S.A, available on
  26. 26.
    Sheela YS, Naik H, Manjunatha Prasad K, Ganesan S, Suryanarayana SV (2017) Detailed data sets related to covariance analysis of the measurement of cross section of 59Co(n, g)60Co reaction cross section relative to the cross section 115 In(n,g)116mIn, Accessed Oct 2017
  27. 27.
    Gilmore G, Hemingway JD (1995) Practical Gamma-Ray Spectrometry. John Wiley and Sons, England, p 17Google Scholar
  28. 28.
    Otuka N, Lalremruata B, Khandaker MU, Usman AR, Punte LRM (2017) Uncertainty propagation in activation cross section measurements. Radiat Phys Chem 140:502–510CrossRefGoogle Scholar
  29. 29.
    Badwar S, Ghosh R, Yerraguntla SS, Jyrwa BM, Lawriniang BM, Naik H, Naik Y, Suryanarayana V, Ganesan S (2018) Measurements and uncertainty propagation for the natNi(p, x)61Cu reaction cross-section up to the proton energies of 20 MeV. Nucl Phys A 977:112–128CrossRefGoogle Scholar
  30. 30.
    Qaim SM, Sudar S, Scholten A, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p, d + pn)99Mo and 100Mo (p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113CrossRefPubMedGoogle Scholar
  31. 31.
    Barrandon JN, Debrun JL, Kohn A, Spear RH (1975) A study of the main radioisotopes obtained by irradiation of Ti, V, Cr, Fe, Ni, Cu and Zn with protons from 0 to 20 MeV. Nucl Instrum Methods 127:269–278CrossRefGoogle Scholar
  32. 32.
    Amjed N, Tárkányi F, Hermanne A, Ditroi F, Takács S, Hussain M (2014) Activation cross-sections of proton induced reactions on natural Ni up to 65 MeV. Appl RadiatIsot 92:73–84Google Scholar
  33. 33.
    Al Saleh FS, Al Mugren KS, Azzam A (2007) Excitation functions of (p,x) reactions on natural nickel between proton energies of 2.7 and 27.5 MeV. Appl Radiat Isot 65(1):104–113CrossRefPubMedGoogle Scholar
  34. 34.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • B. Lawriniang
    • 1
  • R. Ghosh
    • 1
  • S. Badwar
    • 1
  • Santhi Sheela Yerraguntla
    • 2
  • B. Jyrwa
    • 1
  • H. Naik
    • 3
    Email author
  • Y. P. Naik
    • 4
  • S. V. Suryanarayana
    • 5
  1. 1.Physics DepartmentNorth Eastern Hill UniversityShillongIndia
  2. 2.Department of StatisticsManipal UniversityManipalIndia
  3. 3.Radiochemistry DivisionBhabha Atomic Research CenterTrombay, MumbaiIndia
  4. 4.Product Development DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  5. 5.Nuclear Physics DivisionBhabha Atomic Research CenterTrombay, MumbaiIndia

Personalised recommendations