Skip to main content
Log in

Stability evaluation of Tc-99m radiolabeled GRPr antagonist with amino acid chelators

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to select a chelator with excellent stability, easier radiolabeling process and low cost, GRPr antagonist RM26 with the amino acid based chelator was radiolabeled with technetium-99m. The stability of the radiolabeled peptides in PBS, serum as well as in the presence of excess cysteine was compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schroeder RPJ (2009) Peptide receptor imaging of prostate cancer with radiolabeled bombesin analogues. Methods 48:200–204

    Article  CAS  PubMed  Google Scholar 

  2. Mansi R (2013) Targeting GRPR in urological cancers-from basic research to clinical application. Nat Rev Urol 10:235–244

    Article  CAS  PubMed  Google Scholar 

  3. Carsten K (2013) Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting. J Am Chem Soc 135:16793–16796

    Article  CAS  Google Scholar 

  4. Mansi R (2011) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    Article  CAS  Google Scholar 

  5. Ginj M (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA 103:16436–16441

    Article  CAS  PubMed  Google Scholar 

  6. Ginj M (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. PNAS 103:16436–16441

    Article  CAS  PubMed  Google Scholar 

  7. Kristell LSC (2014) Preclinical comparison of Al18F and 68Ga labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med 12:2050–2056

    Google Scholar 

  8. Mansi R (2016) Bombesin-targeted PET of prostate cancer. J Nucl Med 10:67S–72S

    Article  CAS  Google Scholar 

  9. Shirmardi SP (2011) Synthesis and evaluation of a new bombesin analog labeled with 99mTc as a GRP receptor imaging agent. J Radioanal Nucl Chem 288:327–335

    Article  CAS  Google Scholar 

  10. Monroy-Guzman F (2003) Effect of Zr: Mo ratio on 99mTc generator performance based on zirconium molybdate gels. Appl Radiat Isot 59:27–34

    Article  CAS  PubMed  Google Scholar 

  11. Monroy-Guzman F (2012) Production optimization of 99Mo/99mTc zirconium molybate gel generators at semi-automatic device: DISIGEG. Appl Radiat Isot 70:103–111

    Article  CAS  PubMed  Google Scholar 

  12. Abram U (2006) Technetium and rhenium—coordination chemistry and nuclear medical applications. J Braz Chem Soc 17:1486–1500

    Article  CAS  Google Scholar 

  13. Lei K (1996) Technetium-99m antibodies labeled with MAG3 and SHNH: an in vitro and animal in vivo comparison. Nucl Med Biol 23:917–922

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y (2000) Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA. Eur J Nucl Med 27:1700–1707

    Article  CAS  PubMed  Google Scholar 

  15. Vanderheyden JL (2006) Evaluation of 99mTc-MAG3-annexin V: influence of the chelate on in vitro and in vivo properties in mice. Nucl Med Biol 33:135–144

    Article  CAS  PubMed  Google Scholar 

  16. Hjelstuen OK (1998) 3′-99mTc labeling and biodistribution of a CAPL antisense oligodeoxynucleotide. Nucl Med Biol 25:651–657

    Article  CAS  PubMed  Google Scholar 

  17. Verduyckt T (2003) Identity confirmation of 99mTc-MAG3, 99mTc-Sestamibi and 99mTc-ECD using radio-LC-MS. J Pharmaceut Biomed. 32:669–678

    Article  CAS  Google Scholar 

  18. Kan W (2016) Coordination investigation of rhenium with MAG3 using LC-MS and UV spectrometer and the simple radiolabelling process. J Radioanal Nucl Chem 310:695–702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Science and Technology Development of Foundation of China Academy of Engineering Physics (2014A0301011) and China National Natural Science Foundation (21571164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Kan, W. & Liao, W. Stability evaluation of Tc-99m radiolabeled GRPr antagonist with amino acid chelators. J Radioanal Nucl Chem 319, 453–458 (2019). https://doi.org/10.1007/s10967-018-6363-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6363-6

Keywords

Navigation