Skip to main content
Log in

Radiocarbon and radiocesium in litter fall at Kawamata, ~ 45 km NW from the Fukushima Dai-ichi nuclear power plant (Japan)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiocarbon and radiocesium were measured on litter fractions (LF) collected on November 19th, 2011 at 40 km NW of the FDNPP. The 137Cs concentration is much higher in the lower fraction LFb at 226,650 ± 170 Bq kg−1 than in the upper fraction LFa at 7290 ± 40 Bq kg−1. From leaf-air 14C comparison, no excess 14C due to the FDNPP accident is detected in LFa deposited in 2010–2011. A significant 14C difference of 1.4% exists between pine needles and deciduous leaves in LFb, which may be due either to post-depositional processes or to a turnover time of 0.5–1 year of stored carbon for deciduous leaves growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IAEA (2004) Management of waste containing tritium and Carbon-14 technical reports series no. 421. International Atomic Energy Agency, Austria, Vienna 2004, STI/DOC/010/421

  2. Stenström K, Erlandsson B, Mattsson S, Thornborg C, Hellborg R, Kiisk M, Persson P, Skog G (2000) 14C emission from Swedish nuclear power plants and its effect on the 14C levels in the environment. Internal report LUNDFD6/(NFFR-3079), Lund University, Lund

  3. Xu S, Cook GT, Cresswell AJ, Dunbar E, Freeman SP, Hastie H, Hou X, Jacobsson P, Naysmith P, Sanderson DC (2015) Radiocarbon concentration in modern tree rings from Fukushima, Japan. J Environ Radioact 146:67–72

    Article  CAS  PubMed  Google Scholar 

  4. Xu S, Cook GT, Cresswell AJ, Dunbar E, Freeman SP, Hou X, Jacobsson P, Kinch HR, Naysmith P, Sanderson DCW, Tripney BG (2016) Radiocarbon releases from the 2011 Fukushima nuclear accident. Sci Rep 6:36947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu S, Cook GT, Cresswell AJ, Dunbar E, Freeman SP, Hastie H, Hou X, Jacobsson P, Naysmith P, Sanderson DC, Tripney BG, Yamaguchi K (2016) 14C levels in the vicinity of the Fukushima Dai-ichi nuclear power plant prior to the 2011 accident. J Environ Radioact 157:90–96

    Article  CAS  PubMed  Google Scholar 

  6. Xu S, Cook GT, Cresswell AJ, Dunbar E, Freeman SP, Hastie H, Hou X, Kinch H, Naysmith P, Sanderson DWC, Zhang L (2016) Carbon, cesium and iodine isotopes in Japanese cedar leaves from Iwaki, Fukushima. J Radioanal Nucl Chem 310:927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen B, Xu S, Cook GT, Freeman SP, Hou X, Liu CQ, Naysmith P, Yamaguchi K (2017) Local variance of atmospheric 14C concentrations around Fukushima Dai-ichi nuclear power plant from 2010 to 2012. J Radioanal Nucl Chem 314:1001–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steinhauser G (2014) Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ Sci Technol 48:4649–4663

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto S, Ugawa S, Nanko K, Shichi K (2012) The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Sci Rep 2:416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koarashi J, Atarashi-Andoh M, Matsunaga T, Sato T, Nagao S, Nagai H (2012) Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Sci Total Environ 431:392–401

    Article  CAS  PubMed  Google Scholar 

  11. Koarashi J, Atarashi-Andoh M, Takeuchi E, Nishimura S (2014) Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocesium on forest floor driven by biologically mediated processes. Sci Rep 4:6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koarashi J, Atarashi-Andoh M, Matsunaga T, Sanada Y (2016) Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident. Sci Rep 6:1. https://doi.org/10.1038/srep38591

    Article  CAS  Google Scholar 

  13. Evrard O, Laceby JP, Lepage H, Onda Y, Cerdan O, Ayrault S (2015) Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima nuclear power plant accident: a review. J Environ Radioact 148:92–110

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi J, Tamura K, Suda T, Matsumura R, Onda Y (2015) Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 139:351–361

    Article  CAS  PubMed  Google Scholar 

  15. Coppin F, Hurtevent P, Loffredo N, Simonucci C, Julien A, Gonze M-A, Nanba K, Onda Y, Thiry Y (2016) Radiocaesium partitioning in Japanese cedar forests following the “early” phase of Fukushima fallout redistribution. Sci Rep 6:37618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imamura N, Komatsu M, Ohashi S, Hashimoto S, Kajimoto T, Kaneko S, Takano T (2017) Temporal changes in the radiocesium distribution in forests over the five years after the Fukushima Daiichi nuclear power plant accident. Sci Rep 7:8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato H, Onda Y, Hisadome K, Loffredo N, Kawamori A (2017) Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 166:449–457

    Article  CAS  PubMed  Google Scholar 

  18. Ota M, Nagai H, Koarashi J (2016) Modeling dynamics of 137Cs in forest surface environments: application to a contaminated forest site near Fukushima and assessment of potential impacts of soil organic matter interactions. Sci Total Environ 551–552:590–604

    Article  CAS  PubMed  Google Scholar 

  19. Koarashi J, Fujita H, Watanabe H, Sumiya S (2011) Diverse monitoring approaches reveal 14C dispersion pattern and its impact on the environment around the Tokai reprocessing plant. J Nucl Sci Technol 48:120–129

    Article  CAS  Google Scholar 

  20. Koarashi J, Fujita H, Nagaoka M (2016) Atmospheric discharge of 14C from the Tokai reprocessing plant: comprehensive chronology and environmental impact assessment. J Nucl Sci Technol 53:546–553

    Article  CAS  Google Scholar 

  21. Koarashi J, Atarashi-Andoh M, Hikaru Amano H, Matsunaga T (2017) Vertical distributions of global fallout 137Cs and 14C in a Japanese forest soil profile and their implications for the fate and migration processes of Fukushima-derived 137Cs. J Radioanal Nucl Chem 311:473–481

    Article  CAS  Google Scholar 

  22. Kikuzawa K (1983) Leaf survival of woody plants in deciduous broad-leaved forests 1 Tall trees. Can J Bot 61:2133–2139

    Article  Google Scholar 

  23. Loffredo N, Onda Y, Kawamori A, Kato H (2014) Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi nuclear power plant accident. Sci Total Environ 493:701–707

    Article  CAS  PubMed  Google Scholar 

  24. Kikuzawa K (1988) Leaf survivals of tree species in deciduous broad-leaved forests. Plant Species Biol 3:67–76

    Article  Google Scholar 

  25. Tateno R, Aikawa T, Takeda H (2005) Leaf-fall phenology along a topography-mediated environmental gradient in a cool-temperate deciduous broad-leaved forest in Japan. J For Res 10:269–274

    Article  Google Scholar 

  26. Laceby JP, Huon S, Onda Y, Vaury V, Evrard O (2016) Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture? J Environ Manag 183:742–753

    Article  CAS  Google Scholar 

  27. Hatté C, Poupeau JJ, Tannau JF, Paterne M (2003) Development of an automated system for preparation of organic samples. Radiocarbon 45(3):421–430

    Article  Google Scholar 

  28. Moreau C, Caffy I, Comby C, Delqué-Količ E, Dumoulin J, Hain S, Vincent J (2013) Research and development of the artemis 14C AMS facility: status report. Radiocarbon 55(2):331–337

    Article  CAS  Google Scholar 

  29. Wacker L, Němec M, Bourquin J (2010) A revolutionary graphitisation system: fully automated, compact and simple. Nucl Methods Phys Res B 268:931–934

    Article  CAS  Google Scholar 

  30. Synal HA, Stocker M, Suter M (2007) MICADAS: a new compact radiocarbon AMS system. Nucl Methods Phys Res B 259:7–13

    Article  CAS  Google Scholar 

  31. Tisnérat-Laborde N, Thil F, Synal H-A, Cersoy S, Hatté C, Gauthier C, Massault M, Michelot J-L, Noret A, Siani G, Tombret O, Vigne J-D, Zazzo A (2015) ECHoMICADAS: A new compact AMS system to measuring 14C for environment, climate and human sciences. In: 22nd international radiocarbon conference, Dakar, Senegal

  32. Stuiver M, Pollach P (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  33. Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):1299–1304

    Article  CAS  Google Scholar 

  34. Levin I, Kromer B (2004) The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere. Radiocarbon 46(3):1261–1272

    Article  CAS  Google Scholar 

  35. Hammer S, Levin I (2017) Monthly mean atmospheric D14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016. https://doi.org/10.11588/data/10100, heiDATA, V2

  36. Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072

    Article  CAS  Google Scholar 

  37. Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong Y-S, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan PNAS. Proc Natl Acad Sci 108(49):19526–19529

    Article  PubMed  Google Scholar 

  38. Gloaguen JC, Touffet J (1982) Evolution du rapport C/N dans les feuilles et au courss de la décomposition des litières sous climat atlantique. Le hêtre et quelques conifers. Ann Sci For 39:219–230

    Article  Google Scholar 

  39. Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352

    Article  Google Scholar 

  40. Sakata T, Ishizuka S, Takahashi M (2007) Separation of soil respiration into CO2 emission sources using 13C natural abundance in a deciduous broad-leaved forest in Japan. Soil Sci Plant Nutr 53:328–336

    Article  CAS  Google Scholar 

  41. Gautam MK, Lee KS, Song BY, Lee D, Bong YS (2016) Early-stage changes in natural 13C and 15N abundance and nutrient dynamics during different litter decomposition. J Plant Res 129:463–476

    Article  CAS  PubMed  Google Scholar 

  42. Kume A, Tsuboi N, Suzuki TSM, Chiwa M, Sakurai KNN, Horikoshi T, Sakugawa H (2000) Physiological characteristics of Japanese red pine, Pinus densiflora Sieb et Zucc, in declined forests at Mt Gokurakuji in Hiroshima Prefecture. Japan Trees 14:305–311

    Google Scholar 

  43. Muraki Y, Masuda K, Arslanov A, Toyoizumi T, Kato M, Naruse Y, Murata T, Nishiyama T (2001) Measurements of radiocarbon content in leaves from some Japanese sites. Radiocarbon 43(2B):695–701

    Article  Google Scholar 

  44. Sakurai H, Tokanai F, Kato K, Takahashi Y, Sato T, Kikuchi K, Inui E, Arai Y, Masuda K, Miyahara H, Mundia C, Tavera W (2013) Latest 14C concentrations of plant leaves at high altitudes in the northern and southern hemispheres: vertical stability of local suess effect. Radiocarbon 55(2–3):1573–1579

    Article  CAS  Google Scholar 

  45. Lee JH, Kim CH, Kang J, Song S, Yun MH, Kim JC (2017) Radiocarbon data from the vicinity of four south Korean nuclear power plants in 2013–2014. Radiocarbon 59(3):973–984

    Article  CAS  Google Scholar 

  46. Garten CT, Taylor GE Jr (1992) Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation. Oecologia 90:1–7

    Article  PubMed  Google Scholar 

  47. Brooks JR, Flanagan LB, Buchman N, Ehleringer JR (1997) Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 110:301–311

    Article  CAS  PubMed  Google Scholar 

  48. Gaudinski JB, Torn MS, Riley WJ, Swanston C, Trumbore SE, Joslin JD, Majdi Dawson HTE, Hanson PJ (2009) Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling. Glob Change Biol 15:992–1014

    Article  Google Scholar 

  49. Trumbore S, Czimczik CI, Sierra CA, Muhr J, Xu X (2015) Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiol 35:1206–1222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received the financial support of CEA-CNRS-UVSQ and of the French National Research Agency (ANR) in the framework of the TOFU (ANR-11-JAPN-001) and the AMORAD (ANR-11-RSNR-0002) research projects. Thanks are due to the teams of Gif-ECHoMICADAS Radiocarbon Laboratory and of the French AMS National facility LMC14. We thanked an anonymous reviewer for very helpful comments. The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Paterne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paterne, M., Evrard, O., Hatté, C. et al. Radiocarbon and radiocesium in litter fall at Kawamata, ~ 45 km NW from the Fukushima Dai-ichi nuclear power plant (Japan). J Radioanal Nucl Chem 319, 1093–1101 (2019). https://doi.org/10.1007/s10967-018-6360-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6360-9

Keywords

Navigation