Skip to main content
Log in

A study of various self deposition solutions for 210Po analysis in tap water

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The purpose of the present study was to examine the use of various inorganic acids as self deposition solutions and their macroscopic effects on nickel plates which could potentially deteriorate polonium analysis in tap water. 0.5 M, 2 M and 0.1 M hydrochloric acid solutions in addition to 0.1 M and 0.5 M solutions of nitric, hydrofluoric, hydrobromic, hydriodic, sulfuric, phosphoric, sulfamic and perchloric acid were studied and compared. Polonium was plated via self deposition while the chemical recoveries were determined by alpha spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maxwell SL, Culligan BK, Hutchinson JB, Utsey RC, McAlister DR (2013) Rapid determination of 210Po in water samples. J Radioanal Nucl Chem 298(3):1977–1989

    Article  CAS  Google Scholar 

  2. Skwarzek B, Fadisiak J (2007) Bioaccumulation of polonium 210Po in marine birds. J Environ Radioact 93:119–126

    Article  CAS  Google Scholar 

  3. Brown JE, Gjelsvik R, Roos P, Kalas JA, Outola I, Holm E (2011) Levels and transfer of 210Po and 210Pb in Nordic terrestrial ecosystems. J Environ Radioact 102:430–437

    Article  CAS  PubMed  Google Scholar 

  4. Rozmaric M, Rogic M, Benedik L, Strok M (2012) Natural radionuclides in bottled drinking waters produced in Croatia and their contribution to radiation dose. Sci Total Environ 437:53–60

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto M, Sakaguchi A, Tomita J, Imanaka T, Shiraishi K (2009) Measurements of 210Po and 210Pb in total diet samples: estimate of dietary intakes of 210Po and 210Pb for Japanese. J Radioanal Nucl Chem 279(1):93–103

    Article  CAS  Google Scholar 

  6. Savidou A, Kehagia K, Eleftheriadis K (2006) Concentration levels of 210Pb and 210Po in dry tobacco leaves in Greece. J Environ Radioact 85:94–102

    Article  CAS  PubMed  Google Scholar 

  7. Al Attar L, Al-Oudat M, Kanakri S, Budeir Y, Khalily H, Al Hamwi A (2011) Radiological impacts of phosphogypsum. J Environ Management 92:2151–2158

    Article  CAS  Google Scholar 

  8. EURATOM (2013) Council Directive 2013/51/EURATOM of 22 October 2013, laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption

  9. Porcelli D, Baskaran M (2011) An overview of isotope geochemistry in environmental studies. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg. (ISBN 978-3-642-10636-1)

    Google Scholar 

  10. Verdeny E, Masque P, Orellana JG, Hanfland C, Cochran JK, Stewart GM (2009) POC export from ocean surface waters by means of 234Th/238U and 210Po/210Pb disequilibria: a review of the use of two radiotracer pairs. Deep Sea Res II 56:1502–1518

    Article  CAS  Google Scholar 

  11. Persson BRR, Holme E (2014) 7Be, 210Pb, and 210Po in the surface air from the Arctic to Antarctica. J Environ Radioact 138:364–374

    Article  CAS  PubMed  Google Scholar 

  12. Hussain N, Ferdelman TG, Church TM, Luther GW (1995) Biovolatilization of polonium: results from laboratory analyses. Aquat Geochem 1:175–188

    Article  CAS  Google Scholar 

  13. Figgins PE (1961) The radiochemistry of polonium. US Atomic Energy Commission NASNS-3037

  14. Matthews KM, Kim CK, Martin P (2007) Determination of 210Po in environmental materials: a review of analytical methodology. Appl Radiat Isot 65:267–279

    Article  CAS  PubMed  Google Scholar 

  15. Xarchoulakos DC, Kehagia K, Kallithrakas-Kontos N, Potiriadis C (2017) Disequilibrium of dissolved 234U/238U and 210Po/210Pb in Greek rivers. J Radioanal Nucl Chem 312:93–103

    Article  CAS  Google Scholar 

  16. Henricsson F, Ranebo Y, Holm E, Roos P (2011) Aspects on the analysis of 210Po. J Environ Radioact 102:415–419

    Article  CAS  PubMed  Google Scholar 

  17. Martin A, Blanchard RL (1969) The thermal volatilization of 137Cs, 210Po and 210Pb from in vivo labeled samples. Analyst 94:441–446

    Article  CAS  PubMed  Google Scholar 

  18. Church TM, Hussain N, Ferdelman TG, Fowler SW (1994) An efficient quantitative technique for the simultaneous analyses of radon daughters 210Pb, 210Bi and 210Po. Talanta 41:243–249

    Article  CAS  PubMed  Google Scholar 

  19. Ehinger SC, Pacer RA, Romines FL (1986) Separation of the radioelements 210Pb–210Bi–210Po by spontaneous deposition onto noble metals and verification by Cherenkov and Liquid scintillation counting. J Radioanal Nucl Chem 98:39–48

    Article  CAS  Google Scholar 

  20. Martin P, Hancock GJ (2004) Peak resolution and tailing in alpha-particle spectrometry for environmental samples. Apll Radiat Isot 61:161–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios C. Xarchoulakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xarchoulakos, D.C., Kehagia, K. A study of various self deposition solutions for 210Po analysis in tap water. J Radioanal Nucl Chem 319, 419–424 (2019). https://doi.org/10.1007/s10967-018-6348-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6348-5

Keywords

Navigation