Skip to main content
Log in

Stability constants and spectroscopic properties of thorium(IV)-arsenazo III complexes in perchloric acid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The complexation of thorium with arsenazo III in perchloric acid was quantitatively investigated with ultraviolet–visible (UV–Vis) absorption spectroscopy. The UV–Vis absorption of both 1:1 and 1:2 (thorium to arsenazo III) complexes in perchloric acid were found to be highly enhanced than the previously reported absorption of the complexes in hydrochloric acid. The stability constants of thorium-arsenazo III complexes were determined via computational analysis, and the SIT (specific ion interaction theory) was employed to evaluate the dependence on ionic strength. This work contributes to a better understanding of the speciation and spectroscopic properties of thorium-arsenazo III complexes at high ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim JI (2006) Significance of actinide chemistry for the long-term safety of waste disposal. Nucl Eng Technol 38:459–482

    CAS  Google Scholar 

  2. Altmaier M, Gaona X, Fanghänel T (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113:901–943

    Article  CAS  PubMed  Google Scholar 

  3. Grenthe I, Stumm W, Laaksuharju M, Nilsson AC, Wikberg P (1992) Redox potentials and redox reactions in deep groundwater systems. Chem Geol 98:131–150

    Article  CAS  Google Scholar 

  4. Ryu JH, Koh YK, Park SW, Kim GY, Choi JW (2012) Geochemical characterization of deep groundwater in KURT using geochemical modeling. J Environ Eng 138:351–359

    Article  CAS  Google Scholar 

  5. Petrow HG, Strehlow CD (1967) Spectrophotometric determination of thorium in bone ash using arsenazo III. Anal Chem 39:265–267

    Article  CAS  PubMed  Google Scholar 

  6. Kiriyama T, Kuroda R (1974) Ion-exchange separation and spectrophotometric determination of zirconium, thorium and uranium in silicate rocks with arsenazo III. Anal Chim Acta 71:375–381

    Article  CAS  Google Scholar 

  7. Fukuma HT, Fernandes EAN, Nascimento MRL, Quinelato AL (2001) Separation and spectrophotometric determination of thorium contained in uranium concentrate. J Radioanal Nucl Chem 248:549–553

    Article  CAS  Google Scholar 

  8. Shvoeva OP, Dedkova VP, Savvin SB (2007) Sorption and complexation of uranium(VI) and thorium(IV) with reagents arsenazo III and arsenazo M on fibrous filled sorbents. J Anal Chem 62:935–939

    Article  CAS  Google Scholar 

  9. Liang Y, He Y (2016) Arsenazo III functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413

    Article  CAS  Google Scholar 

  10. Savvin SB (1961) Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8:673–685

    Article  CAS  Google Scholar 

  11. Savvin SB (1964) Analytical applications of arsenazo III–III: the mechanism of complex formation between arsenazo III and certain elements. Talanta 11:7–19

    Article  CAS  Google Scholar 

  12. Rohwer H, Rheeder N, Hosten E (1997) Interactions of uranium and thorium with arsenazo III in an aqueous medium. Anal Chim Acta 341:263–268

    Article  CAS  Google Scholar 

  13. Choi S, Lee JY, Yun JI (2017) Stability constants and spectroscopic properties of thorium(IV)–arsenazo III complexes in aqueous hydrochloric medium. J Solution Chem 46:1272–1283

    Article  CAS  Google Scholar 

  14. Leggett DJ (1985) Computational methods for the determination of formation constants. Plenum Press, New York

    Book  Google Scholar 

  15. Wanner H, Östhols E (1999) Guidelines for the assignment of uncertainties. OECD Nuclear Energy Agency, Issy-les-Moulineaux

    Google Scholar 

  16. Grenthe I, Mompean F, Spahiu K, Wanner H (2013) Guidelines for the extrapolation to zero ionic strength. OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux

    Google Scholar 

  17. Wanner H, Östhols E (2015) Standards and conventions for TDB publications. OECD Nuclear Energy Agency, Issy-les-Moulineaux

    Google Scholar 

  18. Renny JS, Tomasevich LL, Tallmadge EH, Collum DB (2013) Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew Chem Int Ed 52:11998–12013

    Article  CAS  Google Scholar 

  19. Jackson GE, Seymour LF (1995) Formation constants at high ionic strength-II. The ionic strength correction of formation constants using a simplified pitzer equation. Talanta 42:9–16

    Article  CAS  PubMed  Google Scholar 

  20. Buděšínský B (1969) Acidity of several chromotropic acid azo derivatives. Talanta 16:1277–1288

    Article  PubMed  Google Scholar 

  21. Kim HT, Frederick WJ (1988) Evaluation of pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J Chem Eng Data 33:177–184

    Article  CAS  Google Scholar 

  22. Das B (2004) Pitzer ion interaction parameters of single aqueous electrolytes at 25 °C. J Solution Chem 33:33–45

    Article  CAS  Google Scholar 

  23. Palei PN, Udaltsova NI, Nemodruk AA (1967) Acid dissociation constants of arsenazo III. Zh Analit Khim 22:1797–1804 (in Russian)

    CAS  Google Scholar 

  24. Němcová I, Metal B (1986) Dissociation constants of arsenazo III. Talanta 33:841–842

    Article  PubMed  Google Scholar 

  25. Kufelnicki A, Lis S, Meinrath G (2005) Application of cause-and-effect analysis to potentiometric titration. Anal Bioanal Chem 382:1652–1661

    Article  CAS  PubMed  Google Scholar 

  26. Khan MH, Ali A, Khan NN (2001) Spectrophotometric determination of thorium with disodium salt of arsenazo-III in perchloric acid. J Radioanal Nucl Chem 250:353–357

    Article  CAS  Google Scholar 

  27. Yamamoto T, Muto H, Kihara S, Motojima K (1971) Spectrophotometric determination of microamounts of plutonium in the presence of uranium. Anal Chim Acta 56:191–196

    Article  CAS  Google Scholar 

  28. Rand M, Fuger J, Grenthe I, Neck V, Rai D (2008) Chemical thermodynamics of thorium. OECD Nuclear Energy Agency Data Bank, OECD Publications, Paris

    Google Scholar 

Download references

Acknowledgements

This work was supported by the BK21 PLUS program, and a grant from the Nuclear R&D Program of the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant Nos. 2016M2B2B1945252 and 2017M2A8A5014801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Il Yun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Yun, JI. Stability constants and spectroscopic properties of thorium(IV)-arsenazo III complexes in perchloric acid. J Radioanal Nucl Chem 319, 401–407 (2019). https://doi.org/10.1007/s10967-018-6342-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6342-y

Keywords

Navigation