Skip to main content
Log in

Efficiency calibration of an on-line detection device for fuel rod failure in a PWR

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a method of calibrating the efficiency of an on-line detection device for fuel rod failure in a pressurized water reactor. 214Am, 137Cs, 60Co and 24Na were selected to produce 4 sets of liquid calibration sources, and a calibration system that could simulate the on-site measurement of the on-line detection device was established. Efficiency calibration was performed against γ-ray lines, which could be identified by a LaBr3(Ce) detector. After a true coincidence summing correction, an efficiency curve of the on-line detection device for fuel rod failure was obtained, with a calibration uncertainty of 3.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim KT (2012) Relation between a fuel rod failure cause and a reactor coolant radioactivity variation. Nucl Eng Des 248:156–168

    Article  CAS  Google Scholar 

  2. Lewis BJ, Chan PK, EI-Jaby A, lglesias FC, Fitchett A (2017) Fission product release modelling for application of fuel-failure monitoring and detection-An overview. J Nucl Mater 489:64–83

    Article  CAS  Google Scholar 

  3. Arkoma A, Hnninen M, Rantamki K, Kurki J, Hmlinen A (2015) Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant. Nucl Eng Des 285:1–14

    Article  CAS  Google Scholar 

  4. Selim HK, Amin EH, Roushdy HE (2017) Rod ejection accident analysis for AP1000 with MOX/UOX mixed core loading. Ann Nucl Energy 109:385–395

    Article  CAS  Google Scholar 

  5. Chen WZ, Yang L, Xiao HG, Chen ZY (2015) Thermal-hydraulics analysis during fuel element failure in an operating PWR. Prog Nucl Energy 85:694–700

    Article  CAS  Google Scholar 

  6. Lee YH, Kim HK (2013) Fretting wear behavior of a nuclear fuel rod under a simulated primary coolant condition. Wear 301:569–574

    Article  CAS  Google Scholar 

  7. Krapivtsev VG, Markov PV, Soloni VI (2015) Flow and heat transfer in fuel rod bundles of water-cooled reactors with modified cell-type spacer grids. Nucl Energy Technol 1:153–157

    Article  Google Scholar 

  8. Gong X, Jiang YJ, Ding SR, Huo YZ, Wang CL, Yang L (2014) Simulation of the in-pile behaviors evolution in nuclear fuel rods with the irradiation damage effects. Acta Mech Solida Sin 27:551–567

    Article  Google Scholar 

  9. Pelykh SN, Maksimov MV, Ryabchikov SD (2016) The prediction problems of VVER fuel element cladding failure theory. Nucl Eng Des 302:46–55

    Article  CAS  Google Scholar 

  10. Huang J, Li N, Zhang Y, Guo Q, Zhang J (2017) The safety analysis of a small pressurized water reactor utilizing fully ceramic microencapsulated fuel. Nucl Eng Des 320:250–257

    Article  CAS  Google Scholar 

  11. Sugiyama T, Umeda M, Fuketa T, Sasajima H, Udagawa Y, Nagase F (2009) Failure of high burnup fuels under reactivity-initiated accident conditions. Ann Nucl Energy 36:380–385

    Article  CAS  Google Scholar 

  12. Kim KT (2010) The study on a statistical methodology for PWR fuel rod internal pressure evaluation. Nucl Eng Des 240:1397–1402

    Article  CAS  Google Scholar 

  13. Qin GX, Chen XL, Liu YJ, Guo XQ (2016) Design of an on-line detection system for fuel rod failure in a pressurized water reactor. J Radioanal Nucl Chem 307:471–477

    Article  CAS  Google Scholar 

  14. Kumar GA, Mazumdar I, Gothe DA (2009) Efficiency calibration and simulation of a LaBr 3(Ce) detector in close-geometry. Nucl Instrum Methods A 609:183–186

    Article  CAS  Google Scholar 

  15. Jutier C, Gross P, LePetit G (2007) A new synthetic formalism for true coincidence summing calculations. Nucl Instrum Methods A 580:1344–1354

    Article  CAS  Google Scholar 

  16. Tsuyoshi K, Satoru E, Nguyen TT, Kiyoshi S (2015) Calculation of coincidence summing in gamma-ray spectrometry with the EGS5 code. Appl Radiat Isot 95:53–58

    Article  Google Scholar 

  17. Qin GX, Liu YJ, Wu HW, Zhang HQ (2016) Efficiency calibration of a HPGe detector for the measurement of the primary coolant. J Radioanal Nucl Chem 310:1033–1040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of China Program (No. 41804114) and Engineering Research Center of Nuclear Technology Application (Ministry of Education No. 1410600030). The authors would like to express thanks to the China Institute of Atomic Energy for its support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiu Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Liu, Y., Xu, Y. et al. Efficiency calibration of an on-line detection device for fuel rod failure in a PWR. J Radioanal Nucl Chem 318, 2067–2072 (2018). https://doi.org/10.1007/s10967-018-6327-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6327-x

Keywords

Navigation