Modelling electrical corrosion potential of 304 stainless steel under fusion power plant environment

Abstract

Predicting the electrical corrosion potential (ECP) of type 304 stainless steel, the structural material of recirculation pipes in fusion power plants, is important because the growth rate of intergranular stress corrosion crack (IGSCC) of 304 stainless steel is closely related to ECP. In this work, a new model has been developed, by modifying existing models, to calculate the ECP of recirculation pipes in future fusion power plant. The calculation results indicate that merely injecting hydrogen cannot reduce ECP below EIGSCC if the dose rate exceeds a threshold, other assisted water chemistry controlling method is necessary.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Kwon J, Motta AT (2001) Radiation hardening in BWR core shrouds: relative roles of neutron and gamma irradiation. React Dosim Radiat Metrol Assess 1398:607–616

    Article  Google Scholar 

  2. 2.

    Kwon J, Motta AT (1999) Effect of radiation damage on BWR core-shroud cracking. Microstruct Process Irradiat Mater 540:483–488

    CAS  Google Scholar 

  3. 3.

    Anderson DS (1985) Bwr hydrogen addition for Igscc. Trans Am Nucl Soc 49:49

    Google Scholar 

  4. 4.

    Gordon GM, Horn RM, Otoole CS (1984) Implementation status of Igscc mitigation in domestic Bwr piping. Trans Am Nucl Soc 46:38–39

    Google Scholar 

  5. 5.

    Gerber TL, Riccardella PC, Giannuzzi AJ (1984) Use of an Igscc damage index for cost-benefit evaluation of Bwr pipe cracking remedies. Mech Eng 106(8):87

    Google Scholar 

  6. 6.

    Self JW (1985) Bwr recirculation piping inspection techniques for Igscc. Trans Am Nucl Soc 49:48

    Google Scholar 

  7. 7.

    Stjarnsater J, Bengtsson B, Forssgren B et al (2011) The effect of grain size on Igscc in Ss 316 l in simulated Bwr environment. In: 15th International conference on environmental degradation of materials in nuclear power systems-water reactors, pp 505–517

  8. 8.

    Roychowdhury S, Kain V, Gupta M et al (2011) IGSCC crack growth in simulated BWR environment—effect of nitrogen content in non-sensitised and warm rolled austenitic stainless steel. Corros Sci 53(3):1120–1129

    CAS  Article  Google Scholar 

  9. 9.

    Zhou ZF, Chalkova E, Lvov SN et al (2007) Development of a hydrothermal deposition process for applying zirconia coatings on BWR materials for IGSCC mitigation. Corros Sci 49(2):830–843

    CAS  Article  Google Scholar 

  10. 10.

    Cowan RL (1997) The mitigation of IGSCC of BWR internals with hydrogen water chemistry. Nucl Energ J Br Nucl 36(4):257–264

    Google Scholar 

  11. 11.

    Cowan RL, Gordon GM (1995) The mitigation of IGSCC susceptibility of BWR reactor internals. In: Annual meeting on nuclear technology ‘95, Proceedings, pp 383–384

  12. 12.

    Irving B (1991) Bwr plants cure Igscc with new technologies. Weld J 70(6):47–50

    Google Scholar 

  13. 13.

    Molander A, Bengtsson B, Jansson C et al (1997) Influence of flow-rate on the critical potential for IGSCC of stainless steel in simulated BWR environment—a SSRT study. In: Proceedings of the eighth international symposium on environmental degradation of materials in nuclear power systems—water reactors, vols 1 and 2, pp 615–621

  14. 14.

    Macdonald D, Cragnolino G (1985) The critical potential for the IGSCC of sensitized type 304 SS in high temperature aqueous systems. In: Proceedings of the Proceedings of the 2nd international symposium environmental degradation of materials in nuclear power systems, Monterey, California

  15. 15.

    Indig ME, McIlree AR (1979) High-temperature electrochemical studies of the stress-corrosion of type-304 stainless-steel. Corrosion 35(7):288–295

    CAS  Article  Google Scholar 

  16. 16.

    Lee JB (1978) Electrochemical approach to corrosion problems of several iron–nickel–chromium alloys in high temperature, high pressure water. Ohio State University

  17. 17.

    Macdonald DD (1992) Viability of hydrogen water chemistry for protecting in-vessel components of boiling water-reactors. Corrosion 48(3):194–205

    CAS  Article  Google Scholar 

  18. 18.

    Yeh TK, Chu F (2000) Electrochemical corrosion potential modeling in the primary heat transport circuit of the Chinshan boiling water reactor under the condition of hydrogen water chemistry with noble metal coating. J Nucl Sci Technol 37(12):1063–1074

    CAS  Article  Google Scholar 

  19. 19.

    Yeh TK, Macdonald DD (1996) Modeling water chemistry, electrochemical corrosion potential, and crack growth rate in the boiling water reactor heat transport circuits. 3. Effect of reactor power level. Nucl Sci Eng 123(2):305–316

    CAS  Article  Google Scholar 

  20. 20.

    Yeh TK, Macdonald DD (1996) Modeling water chemistry, electrochemical corrosion potential, and crack growth rate in the boiling water reactor heat transport circuits. 2. Simulation of operating reactors. Nucl Sci Eng 123(2):295–304

    CAS  Article  Google Scholar 

  21. 21.

    Yeh TK, Macdonald DD, Motta AT (1995) Modeling water chemistry, electrochemical corrosion potential, and crack-growth rate in the boiling water-reactor heat-transport circuits. 1. The damage-predictor algorithm. Nucl Sci Eng 121(3):468–482

    CAS  Article  Google Scholar 

  22. 22.

    Lin CC, Kim YJ, Niedrach LW et al (1996) Electrochemical corrosion potential models for boiling-water reactor applications. Corrosion 52(8):618–625

    CAS  Article  Google Scholar 

  23. 23.

    Hirayama S, Kawabe T (1995) Roles of plasma neutron source reactor in development of fusion reactor engineering: comparison with fission reactor engineering. J Fusion Energ 14(4):343–352

    CAS  Article  Google Scholar 

  24. 24.

    Hickel B, Arvis M, Bjergbakke E et al (1993) Water radiolysis in fusion controlled reactors. J Chim Phys Pcb 90(4):755–765

    CAS  Article  Google Scholar 

  25. 25.

    Molander A (2006) Corrosion and water chemistry aspects concerning the tokamak cooling water systems of ITER. EFDA WP2005, Studsvik Nuclear AB, Sweden

  26. 26.

    Karditsas PJ (2011) Water radiolysis in fusion neutron environments. Fusion Eng Des 86(9–11):2701–2704

    CAS  Article  Google Scholar 

  27. 27.

    Fang Z, Cao XW, Tong LL et al (2018) An improved method for modelling coolant radiolysis in ITER. Fusion Eng Des 127:91–98

    CAS  Article  Google Scholar 

  28. 28.

    SAJI G (2012) Scientific bases of corrosion control for water-cooled fusion reactors such as iter. In: Proceedings of the 20th international conference on nuclear engineering and the Asme 2012 power conference—2012, vol 5, pp 29–39

  29. 29.

    Selman JR, Tobias CW (1975) Unsteady-state effects in limiting current measurements. J Electroanal Chem 65(1):67–85

    CAS  Article  Google Scholar 

  30. 30.

    Selman JR, Tobias CW (1972) Unsteady-state limiting currents at a rotating disk electrode. J Electrochem Soc 119(3):C112000

    Google Scholar 

  31. 31.

    Han P, Bartels DM (1996) Temperature dependence of oxygen diffusion in H2O and D2O. J Phys Chem Us 100(13):5597–5602

    CAS  Article  Google Scholar 

  32. 32.

    Harvey AH, Span R, Fujii K et al (2009) Density of water: roles of the CIPM and IAPWS standards. Metrologia 46(3):196–198

    CAS  Article  Google Scholar 

  33. 33.

    Alvarez M, Barbato S (2006) Calculation of the thermodynamic properties of water using the IAPWS model. J Chil Chem Soc 51(2):891–900

    Article  Google Scholar 

  34. 34.

    Macdonald DD, Urquidimacdonald M (1991) A coupled environment model for stress-corrosion cracking in sensitized type-304 stainless-steel in Lwr environments. Corros Sci 32(1):51–81

    CAS  Article  Google Scholar 

  35. 35.

    Macdonald DD, Mankowski J, Karaminezhaadranjbar M et al (1988) Apparatus for controlled hydrodynamic electrochemical and corrosion studies in high-temperature aqueous systems. Corrosion 44(3):186–192

    CAS  Article  Google Scholar 

  36. 36.

    Tachibana M, Ishida K, Wada Y et al (2012) Determining factors for anodic polarization curves of typical structural materials of boiling water reactors in high temperature—high purity water. J Nucl Sci Technol 49(1–2):253–262

    CAS  Article  Google Scholar 

  37. 37.

    Nichols D, Hirt CW (1978) Numerical-simulation of Bwr vent clearing hydrodynamics. Trans Am Nucl Soc 28:416–417

    Google Scholar 

  38. 38.

    Molander A (2008) A review of corrosion and water chemistry aspects concerning the tokamak cooling water systems of iter. The 2008 Annual Meeting

  39. 39.

    Gulden W, Ciattaglia S, Massaut V et al (2007) Main safety issues at the transition from ITER to fusion power plants. Nucl Fusion 47(7):S415–S421

    CAS  Article  Google Scholar 

  40. 40.

    Iida H, Khripunov V, Petrizzi L, Federici G (2004) ITER nuclear analysis report[J]. ITER report G, p 73

  41. 41.

    Ishidai K, Wada Y, Tachibana M et al (2007) Hydrogen and hydrazine co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors, (VI) the effect of ammonia on intergranular stress corrosion cracking. J Nucl Sci Technol 44(12):1550–1556

    Article  Google Scholar 

  42. 42.

    Wada Y, Ishida K, Tachibana M et al (2007) Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors (IV)—reaction mechanism and plant feasibility analysis. J Nucl Sci Technol 44(4):607–622

    CAS  Article  Google Scholar 

  43. 43.

    Ishida K, Wada Y, Tachibana M et al (2007) Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors (V) effects of hydrazine and dissolved oxygen on flow accelerated corrosion of carbon steel. J Nucl Sci Technol 44(2):222–232

    CAS  Article  Google Scholar 

  44. 44.

    Karasawa H, Ishida K, Wada Y et al (2006) Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors, (III) effects of adding hydrazine on Zircaloy-2 corrosion. J Nucl Sci Technol 43(10):1218–1223

    CAS  Article  Google Scholar 

  45. 45.

    Ishida K, Wada Y, Tachibana M et al (2006) Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors, (II)—reactivity of hydrazine with oxidant in high temperature water under gamma-irradiation. J Nucl Sci Technol 43(3):242–254

    CAS  Article  Google Scholar 

  46. 46.

    Ishida K, Wada Y, Tachibana M et al (2006) Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors, (I) temperature dependence of hydrazine reactions. J Nucl Sci Technol 43(1):65–76

    CAS  Article  Google Scholar 

  47. 47.

    Arkhipov OP, Bugaenko VL, Kabakchi SA et al (1997) Thermal and radiation characteristics of hydrazine in the primary loop of nuclear power plants with water-cooled, water-moderated reactors. Atom Energy 82(2):92–98

    CAS  Article  Google Scholar 

  48. 48.

    Kim YJ, Niedrach LW, Indig ME et al (1992) The application of noble-metals in light-water reactors. J Miner Met Mater Soc 44(4):14–18

    CAS  Article  Google Scholar 

  49. 49.

    Lin CC (2000) Hydrogen water chemistry technology in boiling water reactors. Nucl Technol 130(1):59–70

    CAS  Article  Google Scholar 

  50. 50.

    Wada Y, Uchida S, Nakamura M et al (1999) Empirical understanding of the dependency of hydrogen water chemistry effectiveness on BWR designs. J Nucl Sci Technol 36(2):169–178

    CAS  Article  Google Scholar 

  51. 51.

    Molander A, Pein K, Forsgren AL et al (1999) Corrosion potential monitoring in Swedish BWRs on hydrogen water chemistry. In: Proceedings of the ninth international symposium on environmental degradation of materials in nuclear power systems-water reactors, pp 453–459

  52. 52.

    Lertnaisat P, Katsumura Y, Mukai S et al (2014) Simulation of the inhibition of water alpha-radiolysis via H-2 addition. J Nucl Sci Technol 51(9):1087–1095

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research is funded by National Natural Science Foundation of China (11775214), National Magnetic Confinement Fusion Science Program of China (2014GB122001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong Fang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Tang, J., Xiao, J. et al. Modelling electrical corrosion potential of 304 stainless steel under fusion power plant environment. J Radioanal Nucl Chem 319, 303–314 (2019). https://doi.org/10.1007/s10967-018-6299-x

Download citation

Keywords

  • Electrical corrosion potential
  • Fusion power plant
  • 304 Stainless steel
  • IGSCC