Skip to main content

Removal of U (VI) from acidic and alkaline aqueous solutions by zero-valent iron nanoparticles

Abstract

Removal of uranium (VI) from aqueous solutions by zero-valent iron nanoparticles (nZVI) was investigated in both acidic and alkaline solutions in absence and presence of counter-ions (0.1 M NaNO3). Langmuir and Freundlich equations were applied to model the sorption isotherms whereas the data obtained at 15, 25, 35 and 45 °C from the kinetic experiments were successfully reproduced by a pseudo-second order equation and used for calculation of thermodynamic parameters. Electron microscopy (SEM/EDS), X-ray photoelectron spectroscopy and UV-Fluorescence were applied to explore possible mechanisms. The U-removal seems to be due mainly to sorption followed by U(VI) reduction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8: T
Fig. 9
Fig. 10

References

  1. 1.

    Karpas Z (2015) Analytical chemistry of uranium. CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, International Standard Book Number-13: 978-1-4822-2060-5

  2. 2.

    Runde W (2000) The chemical interactions of actinides in the environment, Los Alamos Science Number 26

  3. 3.

    Bampaiti Α, Misaelides P, Noli F (2015) Uranium removal from aqueous solutions using a raw and HDTMA-modified phillipsite-bearing tuff. J Radioanal Nucl Chem 303:2233–2241

    CAS  Google Scholar 

  4. 4.

    Botha M, Bester L, Hardwick E (2009) Removal of uranium from mine water using ion exchange at Driefontein mine. In: Abstracts of the international mine water conference (Pretoria, S.A.), document transformation technologies

  5. 5.

    Bampaiti A, Yusan S, Aytas S, Pavlidou E, Noli F (2016) Investigation of uranium biosorption from aqueous solutions by Dictyopteris polypodioides brown algae. J Radioanal Nucl Chem 307:1335–1343

    CAS  Article  Google Scholar 

  6. 6.

    Warchoł J, Matłok M, Misaelides P, Noli F, Zamboulis D, Godelitsas A (2012) Interaction of U (VI) aq with CHA-type zeolitic materials. Microporous Mesoporous Mater 153:63–69

    Article  Google Scholar 

  7. 7.

    Sarri S, Misaelides P, Zamboulis D, Papadopoulou L, Warchoł J (2013) Removal of uranium anionic species from aqueous solutions by polyethylenimine-epichlorohydrin resins. J Radioanal Nucl Chem 295:1731–1736

    CAS  Article  Google Scholar 

  8. 8.

    Buema G, Noli F, Misailidis P, Sutiman DM, Cretescu I, Harja M (2014) Uranium removal from aqueous solutions by raw and modified thermal power plant ash. J Radioanal Nucl Chem 299:381–386

    CAS  Article  Google Scholar 

  9. 9.

    Kapnisti M, Noli F, Misaelides P, Vourlias G, Karfaridis D, Hatzidimitriou A (2018) Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem Eng J 342:184–195

    CAS  Article  Google Scholar 

  10. 10.

    Bampaiti A, Noli F, Misailidis P (2013) Investigation of the Cr(VI) removal from aqueous solutions by stabilized iron-nanoparticles using 51Cr-tracer. J Radioanal Nucl Chem 298:909–914

    CAS  Article  Google Scholar 

  11. 11.

    Jing C, Li YL, Landsberger S (2016) Review of soluble uranium removal by nanoscale zero valent iron. J Environ Radioact 164:65–72

    CAS  Article  Google Scholar 

  12. 12.

    Dickinson M, Scott T (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179

    CAS  Article  Google Scholar 

  13. 13.

    Li Z-J, Wanga L, Yuan L-Y, Xiao C-L, Mei L, Zheng L-R, Zhang J, Yang J-H, Zhao Y-L, Zhu Z-T, Chai Z-F, Shi W-Q (2015) Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 290:26–33

    CAS  Article  Google Scholar 

  14. 14.

    Liu D, Liu Z, Wang C, Lai Y (2016) Removal of uranium(VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J Radioanal Nucl Chem 310:1131–1137

    CAS  Article  Google Scholar 

  15. 15.

    Zhang Z, Liu J, Cao X, Luo X, Liu Y (2015) Comparison of U (VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U (VI)–CO3/Ca–U (VI)–CO3 complexes. J Hazard Mater 300:633–642

    CAS  Article  Google Scholar 

  16. 16.

    Savvin SB (1964) Analytical applications of arsenazo III—II: determination of thorium, uranium, protactinium, neptunium, hafnium and scandium. Talanta 11:1–6

    CAS  Article  Google Scholar 

  17. 17.

    Noli F, Kazakis N, Vargemezis G, Ioannidou A (2016) The uranium isotopes in the characterization of groundwater in Thermi-Vasilika Region, Northern Greece. Isot Environ Health Stud 52:1–9

    Article  Google Scholar 

  18. 18.

    Puigdomènech I (1983) INPUT, SED, and PREDOM: computer programs drawing equilibrium diagrams, Report TRITA-OOK-3010, Department of Inorganic Chemistry, Royal Institute of Technology (KTH), Stockholm)

  19. 19.

    Fiedor JN, Bostick WD, Jarabek RJ, Farrell J (1998) Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ Sci Technol 32:1466–1473

    CAS  Article  Google Scholar 

  20. 20.

    Gu B, Liang L, Dickey M, Yin X, Dai S (1998) Reductive precipitation of uranium (VI) by zero-valent iron. Environ Sci Technol 32:3366–3373

    CAS  Article  Google Scholar 

  21. 21.

    Noubactep C, Shoner A, Meinrath G (2006) Mechanism of uranium removal from the aqueous solution by elemental iron. J Hazard Mater B132:202–212

    Article  Google Scholar 

  22. 22.

    Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Review Sep Purif Technol 61:229–242

    CAS  Article  Google Scholar 

  23. 23.

    Bing G, Zhaohui J, Tielong L, Xinhua Q (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830

    Article  Google Scholar 

  24. 24.

    Ho YS, Ng JCY, McKay G (2001) Removal of lead(II) from effluents by sorption on peat using second-order kinetics. Sep Sci Technol 36(2):241–261

    CAS  Article  Google Scholar 

  25. 25.

    Noubactep C, Meinrath G, Dietrich P, Merkel BJ (2003) Mitigating uranium in groundwater: prospects and limitations. Environ Sci Technol 37:4304–4308

    CAS  Article  Google Scholar 

  26. 26.

    Morrison S (2003) Performance evaluation of a permeable reactive barrier using reaction products as tracers. Environ Sci Technol 37:2302–2309

    CAS  Article  Google Scholar 

  27. 27.

    Cantrell KJ, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42:201–212

    CAS  Article  Google Scholar 

  28. 28.

    Farrell J, Bostick WD, Jarabeck RJ, Fiedor JN (1999) Uranium removal from ground water using zero valent iron media. Ground Water 34:618–624

    Article  Google Scholar 

  29. 29.

    Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA (2000) Removal of contaminants from aqueous solution by reaction with iron surfaces. Langmuir 16:2230–2236

    CAS  Article  Google Scholar 

  30. 30.

    Allen GC, Scott TB, Lee DF, Randall MG (2004) The extraction of uranium from groundwaters on iron surfaces. Philos Mag Lett 84(11):691–696

    CAS  Article  Google Scholar 

  31. 31.

    Scott TB, Allen GC, Heard PJ, Lewis AC, Lee DF (2005) The extraction of uranium from groundwaters on iron surfaces. Proc R Soc A Math Phys Eng Sci 461:1247–1259

    CAS  Article  Google Scholar 

  32. 32.

    Choppin GR (2007) Actinide speciation in the environment. J Radioanal Nucl Chem 273(3):695–703

    CAS  Article  Google Scholar 

  33. 33.

    Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942

    CAS  Article  Google Scholar 

  34. 34.

    Matheson LJ, Goldberg WC, Bostick WD, Harris L (2002) Analysis of uranium-contaminated zero-valent iron media sampled from permeable reactive barriers installed at U.S. Department of Energy Sites in Oak Ridge, Tennessee and Durango, Colorado, USA. In: Naftz D, Morrison SJ, Fuller CC, Davis JA (eds) Handbook of groundwater remediation using permeable reactive barriers: applications to radionuclides, trace metals, and nutrients. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

Professor Eleni Pavlidou from the Physics Department of the Aristotle University is gratefully acknowledged for helping with the SEM/EDS study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fotini Noli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noli, F., Babaiti, A., Misaelides, P. et al. Removal of U (VI) from acidic and alkaline aqueous solutions by zero-valent iron nanoparticles. J Radioanal Nucl Chem 318, 2107–2115 (2018). https://doi.org/10.1007/s10967-018-6293-3

Download citation

Keywords

  • Uranium
  • Zero-valent iron
  • Sorption
  • Mechanism