Advertisement

201Tl production through light charged-particle induced reactions on Tl and Hg isotopes: theoretical and simulation approaches

  • Amir Nikjou
  • Mahdi SadeghiEmail author
  • Hamid Azizakram
Article
  • 85 Downloads

Abstract

Investigation of the significant 201Tl diagnostic radionuclide production via protons and deuterons induced reactions by using the 203Tl, 201Hg and 202Hg isotope targets is the main goal of this study. The effect of three phenomenological and microscopic level density models utilizing the TALYS-1.8 code along with TENDL-2017 data were applied to excitation functions evaluations. Furthermore, simulation code was used for the above production processes. Subsequently the prediction of the production yield in each reaction was done. Finally, the comparison between EXFOR database experimental data and the theoretical and simulation-based calculations was implemented.

Keywords

201Tl Level density models Excitation function Production yield TALYS 1.8 

Notes

Acknowledgements

The authors would like to give thanks to Prof. Claudio Tenreiro (Talca University, Chile) for giving MCNPX outputs.

References

  1. 1.
    Ditroi F, Tarkanyi F, Takacs S, Hermanne A (2014) Proton-induced cross-sections of nuclear reactions on lead up to 37 MeV. Appl Radiat Isot 90:208–217CrossRefPubMedGoogle Scholar
  2. 2.
    Qaim MS (2013) Overview of common diagnostic and therapeutic radionuclides (Nuclear Data and Production Technology). Workshop on Nuclear Data for Science and Technology: Medical Applications, Abdus Salam ICTP, Trieste, ItalyGoogle Scholar
  3. 3.
    Sheu RJ, Jiang SH, Duh TS (2003) Evaluation of thallium-201 production in INER’s compact cyclotron based on excitation functions. Radiat Phys Chem 68:681–688CrossRefGoogle Scholar
  4. 4.
    Oliver C (2017) Compact and efficient accelerators for radioisotope production. In: Proceedings of IPAC2017, Copenhagen, Denmark. pp 4824–4829Google Scholar
  5. 5.
    International atomic energy agency (2016) Nuclear cardiology: guidance on the implementation of SPECT myocardial perfusion imaging. IAEA human health series. No. 23 (Rev. 1)Google Scholar
  6. 6.
    Ditroi F, Tarkanyi F, Takacs S, Hermanne A (2015) New developments in the experimental data for charged particle production of medical radioisotopes. J Radioanal Nucl Chem 305:247–253CrossRefGoogle Scholar
  7. 7.
    Willowson K, Bailey D, Schembri G, Baldock C (2012) CT-based quantitative SPECT for the radionuclide 201Tl: experimental validation and a standardized uptake value for brain tumour patients. Cancer Imaging 12(1):31–40CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hignen NM, Varies A, Blange R, Burdinski D, Grull H (2011) Synthesis and in vivo evaluation of 201Tl(III)–DOTA complexes for applications in SPECT imaging. Nucl Med Biol 38:585–592CrossRefGoogle Scholar
  9. 9.
    Jalilian AR, Yari-Kamrani Y, Kamali-Dehghan M, Rajabifar S (2008) Preparation and evaluation of [201Tl](III)-DTPA complex for cell labeling. J Radioanal Nucl Chem 275(1):109–114CrossRefGoogle Scholar
  10. 10.
    Al-SalehFS Al-Harbi AA, Azzam AA (2007) Yield and excitation functions measurements of some nuclear reactions on natural thallium induced by protons leading to the production of medical radioisotopes Tl-201 and Pb-203. Radiochimica Acta 95:127–132Google Scholar
  11. 11.
    Tarkanyi F, Ditroi F, Hermanne A, Takacs A, Adam-Rebeles R, Walravens N, Cichelli O, Ignatyuk AV (2013) Investigation of activation cross-sections of proton induced nuclear reactions on natTl up to 42 MeV: review, new data and evaluation. J Appl Radiat Isot 74:109–122CrossRefGoogle Scholar
  12. 12.
    Rebeles AR, Van Den Winkel P, Hermanne A, Tarkanyi F, Takacs S (2012) Experimental excitation functions of deuteron induced reactions on natural thallium up to 50 MeV. Nucl Instrum Methods Phys Res Sect B. 288:94–101CrossRefGoogle Scholar
  13. 13.
    Azizakram H, Sadeghi M, Ashtari P, Zolfagharpour F (2017) Experimental and FLUKA study relevant to the production of 124I through natTe(p, xn) reaction at a medium-sized cyclotron. J Radioanal Nucl Chem 314(3):1627–1634CrossRefGoogle Scholar
  14. 14.
    Sadeghi M, Enferadi M, Nadi H (2010) Study of the cyclotron production of 172Lu: an excellent radiotracer. J Radioanal Nucl Chem 286:259–263CrossRefGoogle Scholar
  15. 15.
    Sadeghi M, Enferadi M, Nadi H, Tenreiro C (2010) A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J Radioanal Nucl Chem 286:141–144CrossRefGoogle Scholar
  16. 16.
    Sadeghi M, Enferadi M (2011) Nuclear model calculations on the production of 119Sb via various nuclear reactions. Ann Nucl Energy 38:825–834CrossRefGoogle Scholar
  17. 17.
    Blue WJ, Liu DC, Smathers JB (1978) Thallium 201 production with the idle beam from neutron therapy. Med Phys 5:532–536CrossRefPubMedGoogle Scholar
  18. 18.
    Lebowitz E, Greene MW, Fairchild R, Bradley-Moore PR, Atkins HL, Ansari AN, Richards P, Belgrave E (1975) Thallium-201 for Medical Use. Nucl Med 16:151–155Google Scholar
  19. 19.
    Hermanne A, Walravens N, Cicchelli O (1992) Optimization of isotope production by cross section determination. In: Qaim SM (ed) Proc of Int Conf Nuclear Data for Science and Technology, May 1991, Jülich, Germany, Springer-Verlag, Berlin. pp. 616–618Google Scholar
  20. 20.
  21. 21.
    Rochman D, Koning A.J, Sublet J. Ch, Fleming M, et al (2016) The TENDL library: hope, reality and future. In: Proceedings of the international conference on nuclear data for science and technology. Bruges. Belgium. https://tendl.web.psi.ch/tendl_2017/tendl2017
  22. 22.
    Ziegler JF et al (2013) SRIM—The stopping and range of ions in matter. Nucl Instrum Methods Phys Res Sect B 268:1818–1823CrossRefGoogle Scholar
  23. 23.
    Monte Carlo Team (2008) MCNP5/MCNPX-exe Package, Monte Carlo N-Particle extended, Los Alamos National Laboratory report. https://mcnpx.lanl.gov// (with Proper License to Prof. Tenreiro C.)
  24. 24.
    Azizakram H, Sadeghi M, Ashtari P, Zolfagharpour F (2018) A Monte Carlo approach to calculate the production prerequisites of 124I radioisotope towards the activity estimation. NT&RP 33(1):68–74Google Scholar
  25. 25.
    Azizakram H, Sadeghi M, Ashtari P, Zolfagharpour F (2016) An overview of 124I production at a medical cyclotron by ALICE/ASH, EMPIRE-3.2.2 and TALYS-1.6 codes. Appl Radiat Isot 112:147–155CrossRefPubMedGoogle Scholar
  26. 26.
    Lahiri S, Sarkar S (2008) Separation of no-carrier-added Tl and Pb radionuclides using poly (N-vinylpyrrolidone). J Radioanal Nucl Chem 277(3):513–516CrossRefGoogle Scholar
  27. 27.
    Sadeghi M, Sarabadani P, Karami H (2010) Synthesis of maghemite nano-particles and its application as radionuclidic adsorbant to purify 109Cd radionuclide. J Radioanal Nucl Chem 283:297–303CrossRefGoogle Scholar
  28. 28.
    Sadeghi M, Karami H, Sarabadani P, Bolourinovin F (2009) Separation of the no-carrier-added 109Cd from Ag, Cu and 65Zn by use of a precipitation and AG1-X8 resin. J Radioanal Nucl Chem 281:619–623CrossRefGoogle Scholar
  29. 29.
    Zaitseva NG, Deptul CH, Sen Khan K, KhynKhwan K, Mikolaewsky S, Khalkin VA (1991) Separation of thallium-201 from Tl, Pb and Bi cyclotron target materials. J Radioanal Nucl Chem 149:235–245CrossRefGoogle Scholar
  30. 30.
    Ouni L, Mirzaei M, Ashtari P, Ramazani A, Rahimi M, Bolourinovin F (2016) Isocyanate functionalized multi walled carbon nanotubes for separation of lead from cyclotron production of thallium-201. J Radioanal Nucl Chem 310:633–643CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of PhysicsPayame Noor University (PNU)TehranIran
  2. 2.Medical Physics Department, School of MedicineIran University of Medical SciencesTehranIran
  3. 3.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations